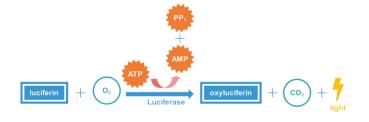
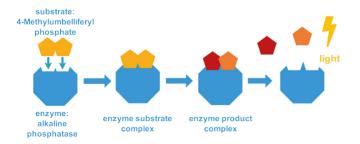


Microbiological (online) monitoring methods for water quality control

Challenges for monitoring microbiological parameters

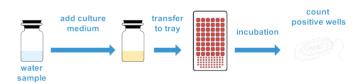

- » conventional microbial culture methods for monitoring water quality are very time consuming
- » various microbiological online devices available but further development and testing is needed

Demonstrated solution and aim of the study

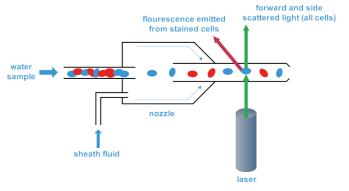

- » monitoring and characterization of microorganisms
- » applying and combining various methods
- » etablish, test and compare rapid operating online monitoring methods

Methodology

parameter	ATP _{free} , ATP _{bound}	Coliforms, <i>E. coli</i>	number of cells	total activity
unit	RLU	MPN/100 mL	TCC/mL	pmol/min
measured variable	fluorescence emitted light	number of positive wells	forward/side scattered light, fluorescence emitted light	fluorescence emitted light
device / company	ATP-meter/ 3M	Colilert/ IDEXX	BactoSense/ Sigrist	BACTControl/ microLAN
online operation	no	no	yes	yes



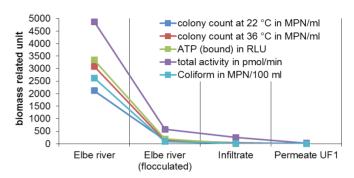
Coliform and *E. coli* via Most Probable Number (MPN) method: dilution method to determine number of bacteria in water sample



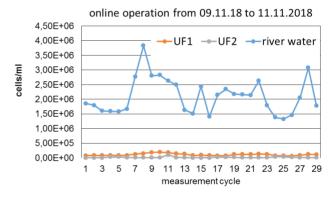
Number of cells via flow cytometry (FCM): sheath fluid focuses cells, causing cells to pass through laser beam one cell at a time, forward/side scattered light and fluorescence is detected

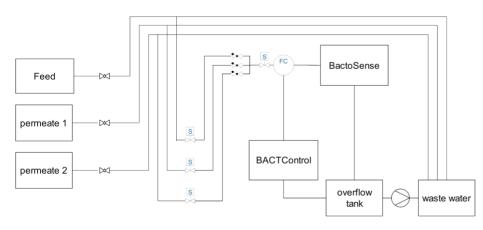
ATP via enzymatic method: reaction between two proteins derived from fireflies, luciferin (substrate) and luciferase (enzyme) occuring in the presence of ATP

Total activity via enzymatic method: reaction between fluorescence marked substrate with specific enzyme



Performance and results


- » all methods indicating microbiological removal and removal of coliform and *E. coli* bacteria in various water treatment steps
- » good correlation with common plate counting methods (colony count at 22 °C and 36 °C)


Comparison of conventional microbial culture methods with applied methods

Benefits and performance of microbiological online-methods

- » speed-up detectability of incidents (rapid analysis, higher sample frequency) compared to common methods (e. g. plate counting methods) which impair microbiological water quality and safety
- » more rapid detection of microbial water-quality problems
- » more rapid determination of whether the water is safe again

Example of FCM online-measurement at UF pilot plant

Schematic structure of an automatic online sampling system at an UF pilot plant

Contact

M.Sc. Yasmin Adomat
University of Applied Sciences
Dresden, Division of Water Sciences
Friedrich-List-Platz 1,
01069 Dresden
yasmin.adomat@htw-dresden.de
www.htw-dresden.de

