684

IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 51, NO. 5, MAY 2004

Simulation of Quantum Transport in Monolithic ICs
Based on In) 53Gag 47As—Ing 50Aly 48As RTDs
and HEMTs With a Quantum Hydrodynamic

Transport Model

Jan Hontschel, Roland Stenzel, Member, IEEE, and Wilfried Klix

Abstract—A new quantum hydrodynamic transport model
based on a quantum fluid model is used for numerical cal-
culations of different quantum sized devices. The simulation
of monolithic integrated circuits of resonant tunneling struc-
tures and high electron mobility transistors (HEMT) based
on Ings3Gag 47As-Ings2Alg 45 As—InP is demonstrated. With
the new model, it is possible to describe quantum mechanical
transport phenomena like resonant tunneling of carriers through
potential barriers and particle accumulation in quantum wells.
Different structure variations, especially the resonant tunneling
diode area and the gate width of the HEMT structure, show vari-
able modulations in the output characteristics of the monolithic
integrated device.

Index Terms—Device simulation, high electron mobility transis-
tors (HEMTs), quantum hydrodynamic, quantum transport, reso-
nant tunneling devices.

I. INTRODUCTION

IRCUITS THAT use resonant tunneling diodes (RTDs)
C hold promise as a technology for ultradense high-speed
integrated digital logic devices. The negative differential resis-
tance of the current—voltage (/-V) characteristic in RTDs can
be used to reduce device counts per circuit functions, thus in-
creasing circuit integration density [1]. The very fast switching
capability makes them suitable for high-speed circuits. High
electron mobility transistors (HEMTs) integrated with RTDs
reduce power consumption, due to the gain and high input to
output isolations provided by the transistors. In particular, these
devices are attractive for applications in new computing archi-
tectures such as neuronal networks and cellular automata, in
which even a simple function requires a large number of con-
ventional transistors due to limited functionality.

For the simulation of the complex nanoscale semiconductor
devices, it is necessary to include quantum mechanical transport
phenomena, like tunneling processes of carriers through poten-
tial barriers or particle accumulation in quantum wells in the
physical model. The quantum hydrodynamic simulation, which
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is based on a quantum fluid dynamic model offers expanding
possibilities for the understanding as well as the design of such
novel quantum sized semiconductor devices. The advantage of
this model is its macroscopic character, because a description
without knowledge of quantum mechanical details like initial
wave function is obtained. The derivation of the full three-di-
mensional quantum hydrodynamic transport model, based on
the Wigner—Boltzmann equation with a shifted moment expan-
sion, delivers the same conservation law as the classical con-
versation law, but the energy density and the energy balance
equation as well as the stress tensor have additional quantum
terms [2]. The consequence of these additional quantum terms
is the extension of the classical hydrodynamic model for the
semiconductor device simulation by expressions in the trans-
port, and in the energy balance equations, which describe an
internal quantum potential in the transport equation as well as
a quantum heat flux in the energy balance equation. These ad-
ditional terms in the classical hydrodynamic model allow us to
describe a continuous electron and hole distribution in a semi-
conductor device, accumulations of carriers in potential wells
and resonant tunneling of carriers, respectively.

In [24]-[28] the derivation of the quantum hydrodynamic
model based on the Schrddinger equation by a quasi-classical
approach is described. It delivers the same quantum hydro-
dynamic model equations and shows the connection to the
quantum hydrodynamic model, which is derived from the
Wigner-Boltzmann equation.

Numerical investigations of MESFETs and HEMTs based
on GaAs—AlGaAs material system by using quantum moment
equations are described in [29]-[31]. Simulations of RTD
structures with a quantum drift diffusion model and the
quantum moment balance equations are presented in [32] and
[33]. Other approaches for the modeling of quantum devices
are, for instance, Wigner function methods [38], [39] and
density matrix methods [40].

Microscopic/macroscopic models, which are based on the
self-consistent one-dimensional or two-dimensional (2-D) so-
lution of the Schrodinger and Poisson equation, depending on
the confinement of electrons, deliver a continuity description of
the electron density distribution from the initial wave function
as well, but they do not include tunneling processes [17]. The
main problem in the microscopic device simulation is the com-
putation time. To decrease the simulation time the microscopic
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model of Schrddinger and Poisson equation is only applied in
the parts of the device where electron gases appear and it is cou-
pled with the known macroscopic drift diffusion model for all
other parts. But with a quantum hydrodynamic description it is
possible to take into account quantum mechanical effects in all
directions of a total complex nanometer structure at acceptable
computation times.

This paper describes the first reported numerical
simulation of monolithic integrated circuits (ICs) of
resonant tunneling structures and HEMTs based on

Ing 53Gag 47As—Ing 50Alp 4gAs—InP with a novel quantum
hydrodynamic model. Section II shows the derivation and the
properties of the appropriate quantum flux model. The survey
of the numerical algorithm of the quantum hydrodynamic
model follows after the summary of the quantum transport
models. Section IV presents the numerical results and the
discussion of different structure variations, especially the gate
width (W) and the RTD area (Agrrp), of the simulated
monolithic integrated device.

II. QUANTUM TRANSPORT MODELS
A. Quantum Hydrodynamic Model

The derivation of the quantum hydrodynamic transport model
is based on a shifted moment expansion with the Wigner—Boltz-
mann transport [2]. The time expansion of the Wigner distribu-
tion function

fr(Ropyt) = —— /OO v (R—i— gt) U (R— gt)

(2mh)* J_ o
exp (—%pw‘) Er (1)

which is the Fourier transform of the density matrix for
a mixed state by using the Schrodinger equation delivers
the collision-less Wigner—Boltzmann transport equation or
Quantum-Lioville equation [3]

0
[a + 2V VRV(R.D). v,,} fw(R,p, 1)+
h_z aSV(R, t) 1 83f‘/‘"(R7p7 t)
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R denotes the center of mass coordinate, and r is the separa-
tion vector. m,, describes the effective mass of the occupation
probability of the carrier, and p is the moment. The quantum cor-
rection of the Wigner—Boltzmann equation is proportional to h?
and disappears for potentials, which mostly depend on quadratic
coordinates of R. For this particular case, the classical Lioville
equation is reproduced. The second term of (2) describes diffu-
sion, and the third one, drift processes. Terms with derivations
of third order in R of the Wigner—-Boltzmann transport equation
is an expression of nonlocality in quantum mechanics, which is
a consequence of the Heisenberg relation.

The conservation law of the Wigner—Boltzmann equation (2)
delivers the same results as the classical conservation law for
the average expectation values of the moments [4]. The shifted
average moments of the Wigner distribution functions are de-
termined in [5].
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The first conservation law delivers the continuity equation
with the first moment

VR'jn(R:t):e<R—G+ 3)

ot
The second conservation law, which the first and second
shifted moments and the continuity equation (3) are included
in, describes the transport equation
. 9 (i (R.1)
Rt (R 1) — | ==
]n( ’ )+TP= n( ’ )at (TL(R7t)
in (R, 1)
n(R,t)

On(R, 1) ) .

-, (R0 Va) -
= —eunn(R,t)Vere(R,t)
—eu,n(R,t)Vg <—]€?BTTL(R7 t)) +eD,Vr(n(R,t))

fim T Ag+/n(R,1)

The treatment of the average velocity and the temperature tensor
in the quadratic term of the second conversation law is the same
as the classical derivation of the hydrodynamic transport model
[4].

The quantum correction term is
nondiagonal quantum stress tensor

n(R, 1) [Vg <1n (n(R, t)))] )

or as self-internal quantum energy, the so-called Bohm potential

[6], [18]-[20]
B Agpyn(R1)
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The divergence of the quantum correction term in the second
shifted moment of the Wigner density distribution function de-
livers the density gradient term in the transport equation

n(R,t)Vg (—AR V(. t)>

n(R,t)
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For the confinement of an electron system in the quantum cor-
rection term of (4) the parameter d is included, which is a value
between 2 and 3.

The derivation of the energy balance equation, the energy flux
density, and the energy density for the quantum hydrodynamic
model is based on the third conversation law and the shifted mo-
ments of the Wigner distribution function. The relation between
the average carrier velocity and the conductivity heat flux den-
sity is used in the same way as in the derivation of the classical
hydrodynamic model [4]. So the energy balance equation is

2(n(R7 t)(wn)) + VR - Sn(R,t) — (R, t) - E(R,1)
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where the energy flux density

Sn(R.t) = —knVRTW(R, 1) — é [(wn) + kpTo(R, 1)
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and the energy density
n 3
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- Ag[tn (n(R.1))]
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are included. The quantum correction term in the energy bal-
ance equation (8) is the so-called quantum heat flux term, which
was derived in [15], [16], and [20]. The parameter d is also in-
cluded in the quantum correction terms of the energy conserva-
tion equations (8)—(10).

(10)

B. Quantum Energy Balance Model

The classical hydrodynamic model can be truncated to the
computationally faster energy transport model while including
basically the same physics for most semiconductor devices. In-
vestigations of practical applications show that the relations in
the transport equation (4), where the impulse relaxation time
Tp,n 18 included, the quantum heat flux term in the energy bal-
ance equation (8) and the average kinetic energy in the equa-
tion for the energy density (10) can be neglected. The quantum
hydrodynamic model can be reduced to the quantum energy
balance model with the continuity equation (3), the transport
equation

Jn(R,t) = —eu,n(R,t)VRe (go(R, t) — k?BTn(R, t))

+eD, Vg (n(R, t))
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the energy balance equation
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where the energy density with the quantum correction term is
included and the corresponding energy flux density is

1 =
Su(R.t) =k VRT,(R,1) = - [%kBTn(R, t)

3 R?

_vag[ln (n(R, t))]] j.(Rt). (13)
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The parameter &, in (9) and (13) for the energy flux density of
both quantum hydrodynamic transport models denotes the car-
rier heat conductivity and is described by the Wiedemann—Franz
law.

C. Quantum Drift Diffusion Model

The quantum drift diffusion transport model or density gra-
dient transport model is deduced from the quantum energy bal-
ance model with the assumption that the electrical field in the
vicinity of the semiconductor device is unfluctuated. Further-
more, the carrier temperature is equal to the lattice temperature.
Based on these suppositions, the solution of the energy conver-
sation equations (12), (13) is negligible. The carrier tempera-
ture gradient in the transport equation (11) comes to zero. The
quantum drift diffusion transport model is reduced to the con-
tinuity equation (3) and the quantum drift diffusion transport
equation is

In(R,t) = —eunn(R,t)Vee(R,t) + eD, VEn(R,t)

ponh” n(R,1)Vr (L‘V n(&, t)) (14)

ddm,, (R, 1)

-2

where the density gradient term is included. The quantum drift
diffusion model or the so-called density gradient model is used
to describe the behavior of electrons in the vicinity of strong in-
version layers near the gate oxide of MOS transistors [22], [23],
[34] or as a quantum correction for the classical drift diffusion
equations [35]-[37].

The classical hydrodynamic transport model, the classical en-
ergy balance transport model, and the standard drift diffusion
transport model can be received if h> — 0 is in the transport
and energy balance equations as well as in the equations for the
energy density and energy flux density.

III. IMPLEMENTATION AND NUMERICAL ASPECTS

For the numerical implementations of the quantum hydrody-
namic model an approach of the quantum energy balance model
is used, where the quantum correction terms in the different
transport equations (11)—(13) are an expression of a quantum
correction potential, similar to Wettstein et al. [12]. Especially
the approach

2Lm ~ AR [ln(n(R, t))] ~ V2, [m (n(R7 t))}(lS)

is introduced. The quantum hydrodynamic model, which is
applied for the numerical simulation can be expressed in the
Poisson equation

VR' (‘C’:VR(P(R? t))
= —c[p(R.t) = n(R.t) + Nf; - N3] (16)

the continuity equation

on(R,t
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the quantum correction potential
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and the energy flux density
5kp

Sn(R/ t) = _’ianTn(Rv t) - i?Tn(R t)jn(Rv t)

AR 1) (R 1), @1
For the parameter d in the quantum correction potential the
value 3 is used.

The problem of the anisotropic effective mass is handled by
the fitting factor y,,, which is a calibration factor for the influ-
ence of quantum mechanical effects on the conventional car-
rier transport [12]. The quantum correction potential in the drift
gradient of the transport equation (11) and in the energy balance
equation (12), as well as the energy flux density (13) is included.
The so-called band parameter ©,, is inserted in the drift gradient
of the transport equation (11) to simulate device structures with
different materials.

The energy relaxation time 7 ,, in the energy balance equa-
tion (12) is calculated by a modified model [7]

3kpTa(R, t)> ‘

CnMnV2,

T
TEm = o0 fé. 5 ( + (22)

Tp,n,0 denotes the impulse relaxation time, v, 5, is the saturation
velocity of the carriers, and ¢, is a calibration parameter.

Numerical investigations of RTD structures, where the results
of the quantum hydrodynamic model are compared to the results
of the transfer matrix method, and to measurement data show
the possibility of the calibration of the tunneling peak current
by the energy relaxation time model [21].

Implementations of the quantum hydrodynamic model using
finite element and finite difference methods are reported in [2],
[8], [9] and [12]. The device simulation environment SIMBA
used for the numerical calculations is based on the finite box
method [10] and [11].

The approach for A, (R,t) as a new variable increases the
number of unknown variables of the nonlinear system. On the
other hand, as (18) is only of second order, it can be discretized
conventionally by combining function values with the nearest
neighboring grid points only.
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Fig. 1. Schematics and modulation scheme for the peak current, which is based
on the parallel integration of RTD and HEMT [14]. The total drain current Ip
is the sum of the currents through the RTD and HEMT.

For (17) and (19)—(21), the Scharfetter—Gummel discretiza-
tion [13] is used. The quantum correction potential (18) is dis-
cretized as

5 L
Tnh o*’
6m,e Z [li_,j (exp
J
Do+t + A
ZkBTi/e

L+ ol + N

2]€BTj/6
- 1)] . (23)

The indexes 7 and 7 are used to designate grid points. The 7-sum
covers the nearest neighbors of grid point 4. ' is the volume of
the box for grid point 4, /%7 is the distance of grid points i and j,
and ¢*7 is the normal area of the box between these points. As
boundary conditions for (23), Vgr(®¢c + ¢ + A,) = 0 atthe de-
vice boundaries are assumed. This corresponds to Vgn(R, t) =
0 for the density-based formula (18) at the discretization of the
quantum correction potential.

Equation (23) is solved by a damped Newton iteration, which
is used for the calculation of the Poisson equation. The total cou-
pled system of the quantum hydrodynamic model is calculated
by the Gummel algorithm.

N, =

IV. SIMULATION RESULTS
A. Device Structure

The operating principle of an integrated RTD-HEMT pair is
represented in Fig. 1. Experimental investigations of such struc-
tures are shown in [14], which are applied for high performance
monostable bistable transition logic elements.

In the integrated device, a HEMT is connected in parallel
to an RTD. The total drain current (Ip) is equal to the sum of
the current passing through the RTD (Igrp) and the HEMT
(TgemT)- Since the gate source voltage (Vgs) can modulate
IygmT, Ip is also modulated by Vigs. As a result, the peak
current of the integrated device is modulated by Vs. It should
be noted that the resonant tunneling current through the RTD
remains unchanged at different gate biases. The cross section
of the device structure, which was used for the simulations,
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Fig. 2. Schematic cross section of the simulated monolithic integrated
RTD-HEMT device.

is represented in Fig. 2 together with the doping densities as
well as the layer thicknesses. For the numerical investigations
some assumptions are imported. The contact areas of the
drain and source are highly doped regions with a density of
Np = 1.0- 10" cm~2 to ensure the channel connection of the
HEMT. The metal contact of the source is turned around to the
bottom of the device structure, connecting the highly doped
areas. The S.I.—InP substrate and the selective etch stop layer is
neglected for the simulation, because the main carrier transport
is concentrated in the channel of the HEMT and in the RTD
structure. For the simulations with the quantum hydrodynamic
model, the relaxation time model (22) is applied. Two different
relaxation times 7p, and calibration parameters c, in the
model (22) are used, where 7, , = 1.0 fs and ¢, = 22 for
the Ing 53Gag 47As—AlAs—InAs material system is meant for
the range of the RTD, and 7, = 2.8 ps and ¢,, = 2.2 for the
Ing.53Gag 47As—Ing 50Alp 48 As—InP material system for the
area of the HEMT.

B. Device Characteristics

At first an integrated device, which has an RTD area of
Agtp = 5.0 um? and a gate width of Wg = 10.0 um as well
as a gate length of L = 700 nm is investigated. The calculated
operating principle of the parallel connection of the RTD and a
HEMT is represented in the output characteristics (Fig. 3). The
drain current of the IC is equal to the sum of the current through
the RTD (Irrp) and the drain current through the HEMT
(Iguem). The isolated RTD exhibits a peak to valley ratio of
P/V = 4.5 at a temperature of 7' = 300 K, with a peak-current
density of Jpeax = 1.5 - 10% A/cm?. The isolated HEMT de-
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Fig. 4. Transfer characteristics of the RTD-HEMT structure.

livers a maximum transconductance of g, max = 850 mS/mm
with a threshold voltage Vi, = —0.47 V for the 700-nm gate
length device. The calculated characteristics of the RTD and
HEMT are comparable to the reported values for the InP-based
material system. It should be noted that the current flow through
the single HEMT device for Vg = 0 and Vps = 0.31 V
(peak voltage) is Ip = 2.14 mA and for Vpg = 0.34 V
(valley voltage) is Ip = 2.19 mA, which results in the reduced
peak-to-valley ratio of P/V = 2.5 at zero gate bias.

Fig. 4 shows the transfer characteristics at different
drain—source voltages of the integrated parallel connection of
the RTD and HEMT. As expected, an increase of the drain
current at lower drain—source voltages can be detected.

The electron density distributions at Vps peak and Vpg valley
are represented in Fig. 5 only for the integrated RTD. A
carrier accumulation in the quantum well at the peak voltage
is obtained. The increase of the electron density between the
potential barriers at Vps peak 1S caused by the tunnel processes
through the RTD. The accumulation region of electrons, where
the carriers tunnel into the potential well from, can be recog-
nized. The depletion region, which the electrons tunnel into
from the potential well, can be observed behind the potential
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Fig. 5. Electron density distribution at Vps peak and Vps vaney for the
integrated RTD.

barriers. For the integrated RTD the presence of significant
charge accumulation cannot be indicated on the source side of
the barrier during the valley current phase operation, like in
most studies, where the tunneling process is concentrated to the
first subband [21]. One reason is the main tunneling process to
the second subband, which is connected to the highly doped
contact regions. Secondly, the decrease of the electron density
distribution in the accumulation region at the valley phase
operation corresponds to the increase of the electron current in
the channel region (Ipgwm), because the same source contact
of the integrated device is used and the electrons cannot tunnel
through the potential barriers. The continuous electron distri-
bution is the consequence of the quantum correction term in the
transport equation (11). The quantum correction in the quantum
drift diffusion model or the so-called density gradient model
provides a useful approach of the Schrodinger equation, which
delivers the same results for the electron density distribution in
the ranges where quantum mechanical effects are expected.

In Fig. 6 the electron temperature distribution is shown at dif-
ferent drain source voltages (Vpg peak and VDS,Vauey) for the re-
gion of the integrated RTD only. For the bias point Vpgs peak =
0.31 V an increasing electron temperature in the range of the two
potential barriers is detected, which is an identifier for the tun-
neling process through the RTD. The electron temperature de-
creases at the bias point Vpg, valley = 0.34 V in the range of the
RTD. The gradient of the carrier temperature is included in the
carrier transport equation (11). With the increase of the carrier
temperature a higher current density is expected. With including
the quantum energy balance equations in the quantum drift dif-
fusion model, the modeling of tunneling processes through po-
tential barriers is possible.

The conduction band edge of the RTD at Vpg peak = 0.31 V
and Vps valley = 0.34 V is represented in Fig. 7. The accumula-
tion and the depletion region are shown. The additional quantum
well between the two potential barriers allows that the first sub-
band is occupied and the main tunneling process is concentrated
to the second subband energy, whereas the tunneling peak in the
output characteristics (Fig. 3) is shifted to lower bias points. The
tunneling-current densities as well as the peak-to-valley ratios
increase.
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Fig. 6. Electron temperature distribution at Vps peax and Vps vaiey of the
integrated RTD.
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Fig. 7. Conduction band energy at Vps peak and Vps vaney in the range of
the integrated RTD.

Fig. 8 shows the quantum correction potential in the range of
the integrated RTD for the bias point Vps peak = 0.31 V. At the
different hetero interfaces strong discontinuities are recognized.
The sum of the conduction band edge and the quantum correc-
tion potential delivers a continuous potential description. The
exponential function of this potential is proportional to the con-
tinuous carrier density distribution. The strong discontinuities
at the hetero interfaces require a high density of discretization
points in these ranges to avoid numerical overflows and conver-
gence problems. The convergence behavior of the Newton iter-
ation of the quantum correction potential as well as the coupled
system of equations of the quantum hydrodynamic model for
the example of the monolithic integrated device is complicated.

C. Variations

Further investigations of some structure modifications were
carried out. Especially the RTD area (Arrp) and the gate width
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(Wg) of the integrated HEMT vary. Figs. 9 and 10 show the
output characteristics of the RTD-HEMT, in which the RTD has
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Fig. 12.  Output characteristics of the RTD-HEMT for Agyp = 10.0 ppm?
and Wg = 5.0 pm.

an area of Agrp = 5.0 um? and the HEMTs possess nom-
inal gate widths of W = 5.0 yum and W = 2.5 pym. In
Figs. 11 and 12, the output characteristics are represented for
the same devices, but the RTD area is changed to Agrp =
10.0 #m? and the gate widths of the integrated HEMTs are dou-
bled. As shown in Fig. 3 the total current of the integrated de-
vice is modulated by the gate voltage. Since the current of each
HEMT is proportional to its gate width, the modulation ampli-
tude of the total current for each gate should be proportional to
the gate width. For the device, which has an integrated RTD
with Agrp = 5.0 um?2, the current modulation at the peak
(VDs,peak = 0.31 V), with a variable bias voltage of Vpg = 0
to Vps = 0.6 V,is Al,, = 1.03 mA (Wg = 2.5 um, Fig. 10),
Al,, = 1.82mA (Wg = 5.0 um, Fig. 9) and Al,,, = 4.15 mA
(W = 10.0 pm, Fig. 3). The current modulation ratio (1.03 :
1.82 : 4.15 = 1 : 1.87 : 4.04) is not exactly the same as
the nominal gate width ratio (1 : 2 : 4). The reasons are nu-
merical inaccuracies of the simulation results when scaling the
single device. For the integrated devices, in which RTD with
Agrrp = 10.0 pm? is included, a current modulation ratio of
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0.98 : 2.05 : 3.63 = 1 : 2.1 : 3.7 is detected (Fig. 11 for
W¢e = 10.0 pm and Fig. 12 for Wg = 5.0 pm). The variation
of the RTD area from Agtp = 5.0 pum? to Agrrp = 10.0 pum?
delivers an increase of the total drain current with the factor two
(see Figs. 9—12). The nominal current modulation ratio is almost
similar for these cases.

V. SUMMARY AND CONCLUSION

The derivation of the quantum hydrodynamic transport model
is described. With the new quantum hydrodynamic model, it is
possible to take into account quantum mechanical effects in all
directions of a complex nanoscale device. The multidimensional
implementation of the quantum correction potential with a finite
box method is obtained, where an additional quantum potential
An (R, t) into the nonlinear system of unknown variables is in-
troduced.

Numerical 2-D-simulations of monolithic
resonant tunneling structures and HEMTs based on
Ing 53Gag 47As—Ing 50Alg 4gsAs—InP are carried out. The
first reported simulation of a monolithic IC by using a quantum
hydrodynamic model is demonstrated. The NDR of resonant
tunneling structures can be used for circuit functions, while
HEMTs can be used to build buffers between neighboring
circuits. The superiority of InP-based material system, which
is used for the simulated IC, is demonstrated in terms of high
peak current density and high peak-to-valley ratio.

The structure variations exhibit a good correspondence be-
tween the current modulation ratio and the nominal gate width
ratio as well as the increase of the total current by the extension
of the RTD area.
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