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Abstract—A PSPICE model for organic thin-film transistors
(OFETs) employing poly(3-hexylthiophene-2,5-diyl) (P3HT) is de-
rived. This model is based on the standard MOSFET Berkeley
Short-channel IGFET Model equations, where the voltage depen-
dences of the charge carrier mobility and the bulk conductivity
are modeled by additional voltage-controlled current sources.
The model requires only five additional parameters, which can
be extracted from the output characteristics of the device. The
model equations have been verified by device simulations, and
the simulation results have been compared with measurements of
P3HT OFETs.

Index Terms—Compact model, organic thin-film transistors
(OFETs), poly(3-hexylthiophene) (P3HT), SPICE.

I. INTRODUCTION

HE RESEARCH in organic electronics has lead to the

development of integrated circuits based on organic ma-
terials, for instance, active-matrix organic light-emitting diodes
or radio-frequency identification tags. An important tool for
the development of such complex organic integrated circuits
is simulation programs such as SPICE that allow for accu-
rate prediction of the electrical behavior even while changing
working conditions or varying internal parameters. Since the
quality of the simulation results depends on the models used,
an accurate description of the physical effects is required.
For example, models are defined according to variable range
hopping of polarons [1], multiple trapping and thermal release
[2], bandlike transport [3], or percolation theory [4]. How-
ever, the complex nature of these models representing intrinsic
phenomena makes it difficult to implement these models in
circuit simulators. On the other hand, simple device models
such as the SPICE model in [5] and the compact static equiv-
alent organic thin-film transistor (OFET) circuit diagram in
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[6] are only valid for a limited range of operation as some
of the fixed model parameters still vary with a changing gate
bias. One important contribution to the modeling of OFETs
for circuit design, yielding a circuit model, was presented by
Fadlallah et al. [7]. Here, the charge carrier mobility was mod-
eled by a dependence on the carrier concentration. From this
dependence, I-V equations were derived and implemented into
a VERILOG model. As mentioned in that paper, it is important
to find the right compromise between the physical approach and
model convergence in circuit design. While laying emphasis on
the convergence criterium, we follow a top—down approach,
adding simple modifications to a standard Berkeley Short-
channel IGFET Model (BSIM).

Therefore, we will show that a simple PSPICE model for
OFETs using poly(3-hexylthiophene-2,5-diyl) (P3HT) can be
derived from experimental data. We first describe the prepara-
tion and characterization of these devices. After that, we discuss
the simulation results obtained by the drift-diffusion device
simulator SIMBA, which indicate that the gate voltage depen-
dence of the charge carrier mobility and the bulk conductivity
have a significant influence on the transistor behavior. Subse-
quently, these simulation results are then utilized to deduce
modifications of the MOSFET equations. Finally, these equa-
tions are implemented in a PSPICE subcircuit, which allow for
a convincing agreement between the model and experimental
results.

II. DEVICE FABRICATION AND CHARACTERIZATION

The transistor electrodes are set up on silicon wafers consist-
ing of highly n-doped silicon acting as the gate electrode and
thermally grown silicon oxide with a thickness of 300 nm as
the gate dielectric (Cfy = 1.151 - 10® F - cm~2). The source
and drain are deposited by thermal evaporation of chromium
(10 nm) for adhesion purposes and subsequently of 50-nm gold
through a shadow mask (I = 26 ym,w = 1500 pum). P3HT is
spin-coated from a chloroform solution, yielding a film with a
thickness of approximately 50 nm. Electrical characterization
is performed using an Agilent 4156C parameter analyzer for
current—voltage measurements in accordance with [7]. A closer
examination of the output characteristics of the devices shows
deviations from the ideal Si-MOSFET behavior, which are
typical for OFETs. The two most important deviations are the
nonquadratic increase of Ip with Vg [8] and the increase of
drain current Ip with increase of drain—source voltage Vpg
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Fig. 1. Measured and simulated current—voltage characteristics. (a) Numerical simulation with the device simulator SIMBA. (b) PSPICE simulation of the output
and (c) transfer characteristics. (d) PSPICE simulation of the output characteristics for |[Vgg| < 10 V.
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in the saturation regime. It has to be noted that the latter
effect cannot be attributed to the short-channel effect as in
Si-MOSFETs but is caused by an increase of the number of
charge carriers in the bulk material and thus an increase of the
bulk conductivity.

III. DERIVATION OF MODEL EQUATIONS

In order to get analytical equations describing the afore-
mentioned effects, we use the device simulator SIMBA to
investigate the electrical behavior of the OFETs. The device
simulator SIMBA solves a set of equations consisting of Pois-
son, continuity, and transport equations for electrons and holes,
based on the so-called drift-diffusion model [9]. These sets of
equations can either statically or dynamically be solved for
the 3-D, as well as for the 2-D, case with the help of a box
method. Since SIMBA is not designed for the simulation of
organic semiconductors, the simulator has to be modified in
accordance with [10]. This means, in particular, that both the
charge carrier mobility and the carrier density depend on the
gate bias. Simulating the measured characteristics with these
adjustments yields the output characteristics given in Fig. 1(a),
which are in good agreement to the measured curves. In the next
step, the aforementioned modifications of the device simulator
have to be transferred in mathematical equations, which can be
implemented in the circuit simulator PSPICE. As emphasis is
laid on practical relevance and extensive physical models are
neglected, we focus on analytical equations that allow for a
simple parameter extraction, in accordance with [11], and a
transparent implementation in PSPICE. To implement the first
modification—the gate-voltage-dependent carrier density—in
PSPICE, we use a voltage-dependent bulk conductance Gy,
parallel to the source and drain contacts [5], [6]. This conduc-
tivity depends on Vg, as shown in Fig. 2(a). The measured
values can be approximated by the simple equation

Gpar(Vas) = Goexp(Vas/Vao) (1)

where GGy and Vo are the model parameters specific for the
given transistor.

For the purpose of modeling the nonquadratic increase of the
drain current and, hence, the influence of the gate-dependent
charge carrier mobility, the contribution of the parallel conduc-
tance is subtracted from the measured curves. Subsequently,
from the corrected curves, the mobilities are calculated by a
fit with the MOSFET equations, with mobility p as fitting
variable for every Vs. The extracted values p(Vig) are given
in Fig. 2(b) and can analytically be approximated by

n(Vas) = po — p1exp(Vas/ Vo). 2

Here, po, 11, and Vo are, again, the model parameters. The de-
crease of the mobility, which is neglected by the approximation
in (2), can be explained as a virtual decrease, which is evocated
by a parasitic series resistance [12]. It must be noted that this
behavior is not universal for all kinds of organic semiconductors
though and, in particular, has not been observed for “high-
mobility” OFETs.
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Fig. 2. Extracted values and mathematical approximation for the (a) parallel
conductance Gpar and (b) charge carrier mobility p from measured output
characteristics (I = 26 pum, w = 1500 pum, Cy = 1.151 - 1078 F-cm™2).

The combination of (1) and (2) with the MOSFET equations
yields an analytical description of the electrical behavior of
OFETs with P3HT for the linear

w
Ip = —fcbx w(Vas)

Vs
X [(Vas — Vin)Vps — —==

9 - Gpar(VGS)VDS

3
and the saturation regime

W
ID:_EC/OX 1(Vas)[Vas —Vin)? = Gpar(Vas) Vs (4)

where W and L denote the width and length of the channel,
respectively, and Cpy is the insulator capacity per area. All
other transistor parameters are independent of Vggs.

IV. PSPICE MODEL

In order to implement the model equations (1)—(4) in a
PSPICE compact model, we use voltage-controlled current
sources (VCCSs) describing the additional currents caused
by the conductance modulation and mobility modulation
[Fig. 3(a)].

In the case of the parallel conductance, G, is modeled by
a voltage-dependent resistor, which is realized by a multiplier
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(a) Equivalent circuit diagram of the organic FET and PSPICE building blocks of the equivalent current sources for the (b) gate-bias-dependent parallel

TABLE 1
PSPICE NETLIST OF THE PRESENTED OFET MODEL

.SUBCKT OFET D G S PARAMS: G0=0.85E-9 VG0=-24.1 Vu0=11.1 ul_by_u0=0.57

VD DD2DC0O

G1 DS VALUE { (VD)*(-ul_by_u0)*exp(V(G,S)/Vu0) }

G2 DS VALUE { V(D,S)*GO*EXP(V(G,S)/VG0) }

M1 D2 GSSMP L=26u W=1500u

.model MP PMOS(VTO=15.0 KP=8.63e-12 TOX=300e-9)

.ENDS OFET

combining current I, and Vpg according to (1). The resulting
equivalent circuit is shown in Fig. 3(b).

The dependence of Ip on Vg caused by the nonconstant
mobility ©(Vgs) can also be modeled by a VCCS. The total
current I can be described by

Ip = k(Vas)Ip ®)
where [ b is the current without mobility modulation, and %
describes the nonlinear dependence of I on Vzg. This can be
rewritten as

Ip = Ip + [k(Vas) — 1 Ip 6)
where the second term on the right-hand side describes the

additional current related to the mobility modulation effect.
This additional current can be modeled by the subcircuit shown

in Fig. 3(c). The subcircuit uses I}, and Vs as input variables
and combines them according to (2).

The complete model whose netlist is given in Table I can
be implemented in the PSPICE circuit simulator and requires
only five additional parameters that can be extracted from the
output characteristics. Comparing the measured and modeled
curves in Fig. 1(b) and (c), all characteristics show an excellent
agreement. In particular, in the range of 0 < |Vgg| <20 V,
where the charge carrier mobility significantly changes, the
simulation results are in good accordance with the measure-
ments, as shown in Fig. 1(d).

V. CONCLUSION

We have presented a simple PSPICE model for OFETSs
employing P3HT. This model is valid for P3HT transistors
in the previously described configuration for gate voltage and
drain voltage both ranging from 0 to —80 V. Different device
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capacitances directly affect the threshold voltage, whereas the
series resistance influences the behavior of the field-effect
mobility with the gate voltage. Furthermore, the mathematical
approximations of G, and p allow for a flexible modeling of
different curves.

This empirical model consists of the standard BSIM and
two additional current sources. The underlying model equations
extend the BSIM by only five additional parameters and allow
for a simple parameter extraction. The correspondence between
the behavior of the introduced parallel resistance and the charge
carrier density in the numerical simulations confirms that the
assumption of increased bulk conductivity with the gate bias is
appropriate.
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