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In a standard process with a conventional rapid thermal annealing (RTA) stress engineering 
is a standard feature for advanced CMOS technologies to improve device performance [1]. 
Unfortunately, such an annealing scheme does not meet the 32 nm node requirements due to 
thermal diffusion and solid solubility limitations. To solve the problem, technologies like flash 
lamp annealing (FLA) [2], laser annealing [3], and solid phase epitaxial regrowth (SPER) [4] 
have been intensively investigated as an alternative to RTA. Stress techniques like embedded 
SiGe (e-SiGe) and dual stress liner (DSL) are already implemented on diffusionless SOI-CMOS 
devices successfully as shown in Figure 1. In [5], a new stress memorization technique (SMT) is 
used to induce tensile stress into the channel using a low temperature SPER process. The 
temperature for this stress memorization phenomenon is usually below 700°C and therefore, a 
negligible amount of dopant diffusion occurs. Thus, this stress technique could be also a method 
to enhance performance of a diffusionless n-MOSFET device further. This report shows for the 
first time the impact of an additional low temperature SPER annealing on device performance of 
non-diffusive flash-annealed MOSFETs. 

To evaluate the stress effects, these experiments were run on both n- and p-MOSFET. Two 
splits are investigated: a FLA only reference device and a low temperature SPER+FLA device. 
Because this SMT requires an amorphized source/drain region and a capping layer the SPER 
annealing was added after the layer deposition for spacer formation. All the other process para-
meters were chosen to be identical for all of these two splits. The FLA for both devices was per-
formed before silicidation. The TEM cross-section of a 35 nm device is represented in Figure 2. 

Figure 3 shows the Ion/Ioff characteristics obtained with the FLA only and SPER+FLA 
devices for n- and p-MOSFET. In contrary to the performance gain for n-MOSFET in ref. [5], a 
6 % Ion degradation is observed for the SPER+FLA devices. We assume that the stress 
memorization phenomenon for the n-MOSFET is overlaid by other effects. In order to investigate 
the possible origin of the degradation, several parameters were monitored. Figure 4 shows the 
SDE sheet resistance (Rs) for n- and p-MOSFET of the FLA only and the SPER+FLA devices 
measured on dedicated test structures located next to the transistor test structures. A much higher 
Rs is apparent for the SPER+FLA devices in comparison to the FLA only devices (+ 200 % for n-
MOSFET, + 50 % for p-MOSFET). We believe that this effect is a deactivation or an insufficient 
activation problem of the SDE due to the combined SPER annealing and FLA. This result 
indicates that for n- and p-MOSFET the observed Ion degradation of the SPER devices is mainly 
driven by SDE resistance. Figure 5 shows the source-drain to gate overlap capacitance. A 30 aF 
overlap capacitance difference between the FLA only and SPER+FLA devices for n-MOSFET 
(20 aF for p-MOSFET) can be observed. This corresponds to an enhanced lateral diffusion of 
1.4 nm for the n-MOSFET (1.0 nm for p-MOSFET). We think this effect is caused by transient 
enhanced diffusion (TED) of the source-drain implants during the following high temperature 
FLA. Correcting this shift in gate-to-drain overlap, we would expect another 5% performance 
loss for the SPER+FLA devices. 

In conclusion, it could be shown that with FLA only in comparison to the combination of 
SPER and FLA less lateral diffusion and better Ion/Ioff performance for n- and p-MOSFET can be 
achieved. In addition, for the combination of SMT and FLA in a diffusionless SOI-MOSFET 
device more investigation is required to improve device performance further. 
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Figure 1: Ion/Ioff characteristics for n- and p-MOSFET 
with and without stressors (n-MOSFET: tensile stess liner,

p-MOSFET: e-SiGe and compressive stress liner). 

 
Figure 2: TEM cross-section 

of a LG = 35nm device. 
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Figure 3: Ion/Ioff characteristics for the FLA only (squares) and the SPER+FLA devices (full diamonds), 

left – n-MOSFET, right – p-MOSFET. 
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Figure 4: Comparison of the SDE sheet resistance 
of the FLA only devices and SPER+FLA devices, 

for n- and p-MOSFET. 

Figure 5: Comparison of the Overlap capacitance 
of the FLA only devices and SPER+FLA devices, 

for n- and p-MOSFET. 
 


