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The output characteristics and the electronic behaviour of a quantum wire transistor (QWT) with
a 1DEG channel have been simulated. The electron transport processes in the QW'T are mainly
influenced by quantum mechanical effects. A coupled microscopic/macroscopic simulation algorithm
is used to calculate the electron density distribution in the electron gas under consideration of the
confinement of the electrons. This algorithm includes the self-consistent solution of the Poisson and
the Schrodinger equation.

Introduction. The structure of the quantum wire transistor (QWT) (Fig. 1) contains a
1D electron gas channel which should be characterised by novel transport properties like
ultra high electron mobilities [1]. The atomically precise quantum wire is generated by a
MBE technique called cleaved edge overgrowth (CEO) as described in [2]. It involves a re-
growth on the sidewall of a cleaved GaAs/AlGaAs heterostructure. Experimental work to
this technology and the QWT has been done at the Walter Schottky Institut, TU Miinchen.
Several quantum mechanical effects appear with the realization of an 1DEG. The
movement of the electrons is confined in one direction. The self-consistent solution of
the Poisson and Schrédinger equation is an accurate model to describe the quantum
mechanical confinement and to compute the electron density distribution and the dis-
crete electronic states. In the microscopic/macroscopic simulation algorithm the micro-
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Fig. 1. Quantum wire transistor structure
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scopic model -of Schrédinger and Poisson equations is coupled with the known macro-
scopic drift-diffusion model to compute nanometer devices by usmg an efficient simula-
tion algorithm.

Model. In the coupled microscopic/macroscopic algorithm [3] the Schrodinger-Poisson
solver is used to calculate the electron density distribution and is coupled with the
‘macroscopic transport equations. Because of the 1D confinement of the electrons in the
GaAs quantum well near the cleavage plane a 2D solution of the Schrodinger equation is
necessary. The Schrodinger equation is solved together with the Poisson equation and
coupled with the macroscopic transport equations for the electrons and holes in the area
where quantum mechanical effects are expected. In all of the other parts of the device
structure the macroscopic drift-diffusion model consisting of the Poisson equation and
the transport and continuity equations for the charge carriers is apphed

The solution of the effective mass Schrédinger equation
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delivers the discrete energy levels E and the corresponding wavefunctions . The square
of the absolute value of the wavefunctions |w,|” is the occupation probability and ny, is
the electron concentration of the energy levels E; of the quantum wire. The electron
density is calculated as [4] '
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The bulk electron density 7,y is assumed in a 3D energy band above the discrete en-
ergy levels where the differences between adjoined levels are less than k7.

Algorithm and Numerical Methods. The principle of the coupled microscopic/
macroscopic , algorithm is described in [3]. The self-consistent solution of the Schrédin-
"ger and the Poisson equation delivers the microscopic electron density and the elec-
trostatic potential. After that the charge carrier densities are changed by the solution
of the macroscopic transport equations and the next step of the iteration starts. In
the transport equations a so-called band parameter is used to simulate heterostruc-
tures. This band parameter is influenced by the microscopic solutlon of the electron
density.

The 2D Schrodinger equation is solved at several discretization planes in the direction
along the 1DEG. The calculation of the current density in that direction by using the
transport equation is possible if the differences between the eigenenergies of adjoining
solutions are less than k7.

The solution of the effective mass Schrédinger equation yields to an eigenvalue prob-
lem. Dirichlet boundary conditions are used for the Schrodinger equatlon Only a limited
number of the lowest eigenenergies is required.

- For the transformation of the Schrodinger equation into the eigenvalue problem two
methods are implemented: the Rayleigh-Ritz method (RRM) [5, 6] and the finite differ-
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Fig. 2. Output . characteristics of -the
- QWT. Triangles: - microseopic/macro-
scopic model, squares: macroscopic model
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ences method (FDM) [7]. As an important difference the FDM delivers a symmetric
band matrix with a dimension equal to the number of discretization points in contrast
to a fully symmetric RRM matrix which dimension is independent of the discretization.

Results and Discussion. The calculated output characteristics of the QWT (Fig. 2)
confirm with the typical characteristics of high electron mobility transistors. The results
obtained from the coupled microscopic/macroscopic algorithm and from the drift-diffu-
sion model are compared. The microscopic solution shows a smaller drain current be-
cause of the more exact used electron density in the 1DEG. This realistic electron den-
sity distribution has two maxima at both edges between the AlGaAs layer, the GaAs
layer and the sidewall (Fig. 3). ‘ '

Several variations of the transistor structure regarding the layer thickness and doping
and the layout parameters have been analysed. A thinner AlGaAs sidewall causes a
higher maximum of the electron density in'the 1DEG and consequently higher currents
and transconductances appear (Fig. 4). A problem is the increased gate leakage current
(see Fig. 2 at small drain to source voltages). f w T

To reduce gate leakage currents the n*-GaAs gate should not overlap the drain and
source regions. The maximum current of such a single QWT is limited by the narrow
channel. For an application a channel of a large number of wires should be con-
structed [1]. ' i e
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10—}, Fig.'4. Transfer characteristics of the
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Conclusion. A coupled microscopic/macroscopic sunulatlon algorithm has been used
to simulate the electric behaviour of a quantum wire transistor. It includes the self-con-
sistent solution of the 2D Schrédinger and the Poisson equation. An efficient solver for
the differential equations and the corresponding eigenvalue problem has been implemen-
ted. The simulation results for the QWT with a channel length of 1 pm and at a tem-
perature of 300 K are comparable with the macroscopic solution.
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