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ABSTRACT

Utilizing a tuned 2D/3D simulation, a physics based small signal model including the substrate effect is proposed
for accurately predicting the RF performance of 0.35µm Standard CMOS devices. The calculation is based on
the drift diffusion model and specifically by using of Mock’s procedure. With the aid of postprocessing the small
signal behavior was determined and the equivalent circuit elements of the intrinsic and the parasitic part of the
MOSFET were calculated. The calculated data and elements of the equivalent circuit model are computed in
the range from 1GHz to 100GHz. The data shows the transformation of the MOSFET from an active element
to a passive element.
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1. Introduction

The growing market of communication products de-
mands low cost circuits. That is why the microelec-
tronics industry is concentrating on the design and
development of systems that include the digital base-
band subsystem and the analog/RF front-end in a
single chip.

Advances in CMOS process technology have con-
tinued to reduce the minimum channel length of the
MOS device, consequently increasing the unity gain
cut off frequency, fT , of the transistors. Now fT ’s
exceed 100GHz [1]. The focal point is put on CMOS
technology due to its low cost compared to its bipo-
lar counterpart. CMOS technology allows to unite
the issues of RF analog and baseband digital circuit
integration in the same silicon chip. The most criti-
cal part of such a system is the RF front-end which
mainly defines the quality of received/transmitted
signals. The design of monolithic RF-CMOS circuits
has been the subject of recent research efforts [2]-
[6]. A handicap for the realization of commercial
RF components in a standard CMOS technology is
the lack of models that accurately predict the MOS
device behavior at high frequencies and also con-
sider the influence at the substrate. The small-signal
equivalent circuit model for the intrinsic Si MOSFET
with contact and wire parasitics is already described
[7, 8] and the investigation of the substrate influence

has begun [9]-[11].
Layout differences between simple MOS and RF

MOS transistors cause modifications of bulk effects.
With the method of Kolding [12] to include bulk
straps and to divide a RF transistor into clusters, it
may be possible to obtain scalable RF CMOS mod-
els.

Contemporary models are based upon accu-
rate parameter extraction approaches including S-
parameter measurements and Y-parameter analy-
sis. This implies the realization of a plurality of
test structures together with a proper de-embedding
method. A faster way to obtain these elements is
with a physical device simulation using a tuned sim-
ulator.

During the last years, computer performance has
risen to a level where 3D simulation of sub-micron
elements is more effective [13, 14].

This paper describes a method to determine the
resistances between source/drain junctions and the
substrate contacts using a 2D/3D dimensional simu-
lator.

2. The Simulator

For our simulations we used the 2D/3D numerical
simulator SIMBA [15, 16] SIMBA is based on two
and three-dimensional solutions of the Poisson equa-
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(J: current density, R: recombination rate, G: gen-
eration rate)
and the corresponding transport equations

Jp = −eµpp∇ϕ− kTµp∇p (4)

Jn = −eµnn∇ϕ− kTµn∇n (5)

(µp, µn hole and electron mobility).
The dynamic simulation is done by using Mock’s

procedure [17]. For a final comparison with known
data we compared the calculated transit frequen-
cies (fT ) and the maximum frequency of oscillation
(fmax) with data taken from measurement. At a cer-
tain bias point, a voltage step is applied to the gate
and the transit behavior is calculated, until the sta-
tionairy solution is reached. Then the output tran-
sient is generated in the same way. We computed
the complex conductance parameters as follow:
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On the basis of these elements the current gain h21,
the maximum available gain (MAG) and the maxi-
mum stable gain (MSG) can be calculated [18]:

h21 =
∣∣∣∣y21

y11

∣∣∣∣ (8)
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Fig. 1. π-elements of the conductance matrices
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Fig. 2. Equivalent circuit elements
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Fig 1 shows the relationship between the con-
ductance matrix elements and the equivalent cir-
cuit elements. The comparison of the elements of
the intrinsic MOSFET and the conductance matri-
ces shows the dependency of the two schematics. To
get the small signal elements we split the real and
imaginary part of the complex conductances. Fig. 2
shows such a schematic. The current of the voltage
controlled sources are calculated as follows:

id = U ′gs gm e−ωτ1 (11)

ib = U ′bs gmb e
−ωτ2 (12)

The determination of the parasitic elements is
similar to the determination of the intrinsic elements.
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Fig. 3. Combined equivalent circuit elements
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Fig. 4. Used MOSFET structure

For the calculation of the intrinsic elements, the sub-
strate contact (B) was clamped to Vbs = 0V . To
get the parasitic elements, we clamped the gate con-
tact to a certain bias point and applied the input
transient to the substrate contact. The comparison
between the intrinsic and parasitic elements of the
MOSFET shows great similarity. With this assump-
tion it is possible to calculate the parasitic elements
in the same way. The elements between drain and
source are in this case negligible compared to the
intrinsic parameters.

Under the condition that the bias points of the
source and drain contacts in both simulations are the
same, we can combine the two equivalent circuits.
The result is shown in Fig. 3

3. Simulation and Results

For our investigation we have chosen a 0.35µm
CMOS mixed signal technology. We used transis-
tors with a gate width of 20µm and a separate sub-
strate connection similar to the cross section shown
in Fig 4.

The general basis of our investigations include
doping profiles from a technology simulator and also
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Fig. 5. Impurity densities of the n-channel-LDD
regions
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Fig. 6. Output characteristics n-MOSFET
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Fig. 7. Output characteristics p-MOSFET

rgs [Ω] Cgs [fF] rgd [Ω] Cgd [fF]
n 64 20 ≈ 0 2.3
p 165 17 ≈ 0 2.3

Cds [fF] gd [mS] gm [mS] τ [ps]
n 16 0.22 4.3 1.33
p 9.3 0.15 2.0 2.0

rbs [Ω] Cbs [pF] rbd [Ω] Cbd [pF]
n 94 30 144 16
p 83 13 72 6

Table 1. Equivalent circuit elements, valid up to
10GHz
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lab measurements. For describing the doping profile
within our simulation we used the Gaussian distribu-
tion for ion implantations [19]. The generated doping
profiles (Fig. 5) were compared with the data from
the process simulation and with additional measure-
ments.

For adjusting the simulator to the technology, the
transfer and output characteristics are computed and
compared with measurements. The results of this
static analysis are shown in Fig. 6 and 7.

We also calculated and measured the frequency
characteristics. For the n-MOSFET we got in both
cases a fT of 32GHz and a fmax of 48GHz. The cal-
culated results for the p-MOSFET are fT = 17GHz
and fmax = 38GHz This step was included to verify
the frequency behavior of the MOSFETs. After the
verification of the model, we calculated the equiva-
lent circuit elements. As an example of the results
of the frequency calculation, the resistors of the in-
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Fig. 10. Time delay of the substrate source at
Vgs = 2V and Vds = 3V

trinsic and parasitic part are included (Fig. 8). This
figure shows good linearity in the area below 10GHz.
The other linear equivalent circuit elements in these
area are listed in table 1.

The influence of the current source is small. As
shown in Fig. 9, the control factor is about 10 times
lower then the control factor of the voltage controlled
source of the gate. This means, the current through
the MOSFET is mainly defined by the voltage con-
trolled current source of the gate. Additionally, the
time delay (shown in Fig. 10) is much larger than the
time delay of the gate current source.

Not negligible is the substrate resistance rdsb. As
shown in Fig. 11, the resistance of the n-MOSFET
shows no valid data above 10GHz. Below this bor-
der the resistance is at least twice higher than the
equivalent source drain resistance in the gate sector.
The frequency behavior of the rdsb-resistance limits
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Fig. 11. Substrate resistance vs. frequency at
Vgs = 2V and Vds = 3V



the equivalent circuit model for the n-MOSFET up
to 5GHZ. The model of the p-MOSFET is valid at
least to 10GHz.

Further investigations should take a look at the
resistor rdsb. It shows a strong influence on the chan-
nel conductance.

4. Conclusion

Numerical simulations of n- and p-channel MOS
transistors have been used to predict the high fre-
quency behavior of such devices in a 0.35µm mixed
signal CMOS technology. The simulator was tuned
by utilizing static FET characteristics. A small sig-
nal model considering the substrate effect is pro-
posed. The predicted transit frequency for n- and
p-MOSFETs exhibit a good agreement with mea-
surements.
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