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1. Motivation and Background

The principal possibility to represent the outer gravitational potential of the earth
(or of an other planet) by superposition of potentials of point masses (where the
masses are distributed in the earth's interior) is evident from discretisation of
Newtons representation (1) and is surely wellknown for a long time.
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( P - outer point; q - inner point;q; - point within the volume element v;
1(P,q) - distance between P and q ; @ - mass density)

The idea of using point masses in geodesy is ascribed to J.A.Weightman who
surely has stimulated the following investigations in this field decisively by his
paper in Athen (Weightman, 1965). The publications of the soviet colleagues
went a little bit unheeded (because of the language barrier): Kupradze and
Aleksidze (1964) proved that point mass potentials are linearly independent and
complete if the masses are located on a closed surface inside the earth, and
Aleksidze discussed in (Aleksidze, 1966) the possibility to approximate the
disturbance potential by point masses.
It is interesting that in the first application the gravitational field of the moon was
approximated and not that of the earth (Muller, Sjogren, 1968). The reason for
that are on the one hand the structure of the moons field which really is
characterized by the so called mascons and on the other hand by the fact that,
because of the observability of the lunar probes, there was much more
gravitational field information for the front than for the back of the moon and one
had to choose an adequate representation.
Among the great number of publications which followed thereupon the ones by
Needham (1970) and Balmino (1972, 1974) should be mentioned here. The basic
idea was to distribute the point masses regularly below the desired area and to
determine the magnitudes of the masses by least squares approximation of the
measurements (functionals of the gravitational field). At that time the most
important motivations to use the point mass method were:
- adaptability to spatial distribution of measurements, i.e. the possibility of
increasing the number of parameters without perturbing distant regions
- discrete formulation leading to simple programming
- possibility of simple combination of observations from different sources
- possible connections to geophysics
Balmino (1974) raised the question, whether the number of the needed point
masses can be diminished substantially, if not only the magnitudes but also the
positions of the point masses are optimized. The approximation of the outer
gravitational field by point masses with optimizing the masses and position of the
point masses leads to a complicated non-linear optimization problem. In
connection with the solution of this problem a number of questions of
approximation theory as well as questions related to the inverse problem of
potential theory have to be solved. A detailed discussion of these problems and
the formulation and theoretical foundation of a corresponding approximation
algorithm one can find in (Barthelmes, 1986). Practical results, globally as well




as locally, based on this algorithm were presented in (Dietrich and Gendt, 1989),
(Dietrich, Gendt, Barthelmes, 1990), (Barthelmes, 1988), (Barthelmes and
Dietrich, 1990).

During the last years some aspects of motivation to use point mass methods for
gravity field approximation have been changed. With the availability of faster and
faster computers having more and more storage (and with the possibility to grid
and to interpolate any representation) the problem to find a mathematical
representation being very fast in operational work seems to play not any longer a
dominant role (nevertheless this aspect will not be completely meaningless for
special aims). Also the adaptability of some mathematical representation to
irregular distributed data probably will lose its importance in future if satellite
gradiometry, besides altimetry, will provide dense gravity information over the
whole earth. But surely one will not renounce the concept of overlaying global,
regional, and local models (with higher and higher resolutions) - and it should be
advantageously to use a mathematical representation which is suitable for it in
like manner (e.g. the point mass method) because it enables an unique
mathematical modelling.

On the other hand, in our opinion the point masses' connection with geophysics
(1.e. the possibility of modelling the outer gravitational field as sum over the
fields of spherically symmetric density anomalies inside the earth) becomes more
important. Besides the more and more detailed knowledge about the outer
gravitational field the data describing the inner structure of the earth (esp. the
density distribution) will obviously become better too because of more and more
complex geological-geophysical treatment of the problem. As great aim one can
formulate (even if an acceptable solution is in the distant future):

Permanent improvement of a model, which is in full agreement with all data
concerning the inner structure (density, temperature, pressure, caloric
conductivity, velocity of seismic waves etc.) as well as with all data concerning
the outer gravitational- and magnetic field.

How could such a model be parameterized ?.

Point masses (-potentials) are on the one hand, from mathematical point of view,
the fundamental solutions of Laplace's equation and on the other hand, from
physical view point, the simplest sources of gravity. All possible outer potentials
as well as all possible density structures can be approximated arbitrarily accurate
by point masses (e.g. spherically symmetric density anomalies). Although enough
information about the earth interior will not be available in the near future to
tackle the above formulated aim seriously and the combination of potential data
and earth-interior-data will require immense research work, it seems reasonable
to test the point mass method with mass-position-optimizing concerning its
efficiency in geodesy.

In the following the algorithm deduced in (Barthelmes,1986) (and published in
detail up to now in German only) will be presented once more including some
theoretical aspects followed by practical results based on the geopotential
ccg)gf)ﬁcient gravity model OSU89B (complete to degree 360) (Rapp and Pavlis,
1990).

The basic idea of the approximation algorithm consists in approximating a set of
given boundary values (in our case gradient vectors of the disturbance potential)
by increasing the number of point masses step by step up to a desired accuracy.
The adjusted parameters are the magnitudes and the positions of the point masses
and the number of masses to reach a defined accuracy should be as small as

possible.



2.Theoretical Formulation of the Algorithm

2.1.Some Theoretical Presumptions

Let  be the open set in E3 outside a sphere o with center at the origin. Consider
the space H of all functionals U for which holds :

- U is two times continuously differentiable in € :
U e COX(Q) @)
- U satisfies Laplace's equation in { :
AU =0 €)
- U is regular at infinity:
|U®P)| = O1/[P]) ; | grad U®P)| = O(I/|P|) if |IP| >0  (4)
(P € 2 ; O(x) = Landau-Symbol)

The space H of harmonic functions may be equipped with the wellknown inner
product

(U[V) = l/4r | UV do o)
or ¢

(U|V) = 1/4x | gradU gradV do 6)

and if we only requirea functions having square integrable boundary values H
becomes a Hilbert space.
The set of point mass potentials { ¢;(P) }

¢i(P) = |gi-P|! ; qie EA\Q;Pe@ )

is complete in H, if {q;} (i.e. the point mass positions) is a dense point sequence
on o (or on another regular inner surface) (Kupradze, Aleksidze, 1964),
(Freeden, 1980). That means any potential can be approximated arbitrarily
accurate by point mass potentials.

Any countable set of point mass potentials are linearly independent, if the masses
are arbitrarily distributed in the inner region provided that qi + q; if i + j
(Stromeyer, Ballani, 1984). That means, two configurations of a finite number of
point masses inside the earth produce in any case different potentials, if both
point mass configurations are not identical.

With that the theoretical presumptions are given to optimize in practical gravity
field approximations by point masses also the positions of the masses. In this
connection it is worth mentioning the fact, that the inverse gravimetric problem
(which is nonunique for continuous density distributions) becomes unique if the
solution is restricted to a countable number of point masses (density 6-pulses).



2.2. The Approximation Algorithm

The anomalous potential T ¢ H should be approximated. Although the point mass
potentials are not orthogonal let { hj ¢ H : (i=1, 2, 3,...)} be an orthonormal
basis. From the set {h;} N vectors {h;,, h;,, ...,h;y} should be selected such, that
(for fixed N) the vector T will be approximated as good as possible:

N N
I'T - E(Thin) || = min { || T - E(T | byhicy | = kim € Nz} ®

(Nz - set of natural numbers)

It is easy to show, that the vectors {h;.} can be selected by looking for that inner
product with the vector T which has the greatest absolute value. For the N-th
step of stepwise approximation that means :

N-1
(T | hi)? = max {(T - L (T| bimhin | hioy)? : ki € Nz} 9)

Let us now consider the approximation using as base functions the non-
orthogonal point mass potentials. Because of the non-linearity if a new point mass
is added, strictly speaking, all previous point mass positions have to be changed
(by non-linear optimization) again. On principle it is no problem to find the
nearest local minimum for given start values by the help of the known methods of
non-linear optimization. Consequently the problem consists in finding reasonable
values for the point mass positions. The idea is, to use at each step (adding of a
new point mass) the previous point mass positions as approximate values for the
optimization procedure. The start position for the new mass can be found like in
the orthogonal case (9).

Now the algorithm can be formulated mathematically:

Notation: ®; = ¢;||¢;]|"!  (normed base function to have || ®;| = 1)
ui - normed coefficient
additional upper indices (e.g. ;N , ¢;V) to take into consideration
the fact, that all point mass positions are different for different
approximation levels N
ok = (P,gY) ; " = &(P,q)

E" - n-dimensional euclidian space



1-st step
Determinatiop of q;! (i.e. ®;!) and u,! by
(T|®;)? = max{(T|®"2: * ¢ E3\Q} and p;! = (T| ;)
N-th step
a) Determination of the approximate values ;N (i.e. giN) (i=1,...,N-1) by
aQN = g1 (ie. BN = &N

b) Determination of the approximate value ETNN (i.e. gNN) by

N-1 = N-1 -
(T - 25 [LiN'l q)iN'l I‘I’iN'l)z = max{(T - Z:l [l.iN'l (biN'l |(p*)2 : q* € E3\Q}
1= 1=

¢) Determination of g;N (i.e. ;M) and wN (i=1,...,N) by

N N -
" Tf?{"‘iN q)iN ” = mln{ II Tf?{‘vi* <I)i* ” . ql* e E3\Q s l“'i* ¢E s (i=1,...,N) }

The described procedure is justified especially if the used point mass potentials
are 5"nearly orthogonal”, which is better fulfilled for the inner product (6) instead
of (5).

3. Practical Realization of the Algorithm

Boundary values:
acceleration vectors equally distributed over the sphere ¢

Determination of the start position of each new point mass:
Since only one base function (point mass position) has to be searched for the
principle of equ.(9) can be used which is equivalent to the minimization :

| Tt - e &N || = min || Ty - " @*|| 1 q* € E3\Q; " ¢ E } (10)

N
with Ty, =T- EuiN o;N
i=1

Therefore it is only necessary to find a start position for the non-linear
optimization (10), which on its part gives the start position for the N-th point
mass. This start position for (10) one can find by putting the mass below the
maximum value of |grad Tn.1(P)| , P e o.



Additional simplification at the practical realization:

Not all point mass positions are improved at each step - all those point masses
the scalar product of which with the new point mass is smaller than a given
value S, remain unchanged.

For each approximation level it is possible to make an additional (linear)
adjustment of the magnitudes for fixed point mass positions using several
properly, mutually weighted functionals of the gravity field.

4. Some Aspects of Nonlinear Least Squares Estimation

The point mass models with optimized positions are obviously nonlinear.
Therefore many wellknown properties of parameter estimation in linear models
can not be applied. Generally we have for example

E{f(x)}=f(E{x}) (11)

Simple propagation laws for covariances or for whole distributions as in the
linear case do not hold rigorously.

We assume gauss-distributed observations d with weight matrix P, we estimate
parameters x (magnitudes and positions of point masses) by means of the least
squares method and finally we predict gravity field functionals f.

2 -1
Model: E{d}=G(x), cov{d}=0,P
Est. principle: [d-G(;()]P[d-G(;()]=min.
Estimate: ;(=G'(d) (G~ is the least squares estimator)

Prediction:  f= F(;()

At least as important as the estimates themselves are of course values to describe,
how much one can rely on them. This could be the variances, but one should
have in mind, that estimators in nonlinear models are not completely determined
by mean and variance. Premature conclusions could be misleading.

Besides there are some obstacles even to get realistic (say unbiased) means and

variances:

1Ist bias source: Nonlinearity

Generally the bias in the mean
E{x-x} =G (E{d})-E{G"(d)}

is indeed nonzero (cf.(11)). The same holds true for f. To obtain variances we
linearize G™,F and apply the linear covariance propagation laws:

cov{x} = (0G/od) |, cov{d} (6G™/5d)| q b
(12)

cov{f} =~ (6F/ox) . cov{x} (6F/6x) ;



Terms including higher derivatives of G~ or F are truncated. Therefore the
obtained values are again incorrect. The amounts of bias due to nonlinearity
depend on the noise level and on model design. So we should investigate, how
much noise could be permitted and which model design minimizes the bias.

2nd bias source: Incomplete optimization

In order to save computation time we should not go too far in our stepwise
nonlinear optimization procedure, symbolically represented by

Xp+1=Xp+0x, , where n=0,1,...

But our feeling of convergence is rather deceivable and we have no simple means
to assess the bias | Xgo-X, | or JF(xoo)-F(xn) | Moreover, the solution X
should depend on nothing efse than . Virtuelly estimates are fully undetermined,
if they depend on fully uncertain quantities like x, occasionally. But our choice
of x,, is based on detailed investigations and it is to some extend certain. Further
studies should indicate, how serious this bias really could be.

3rd bias source: Inexact theory

Everywhere in gravity field modelling we are faced with more or less arbitrary
choices (norms, base functions etc.). Some features of the field remain
unmodelled and cause a systematic deviation between estimated and true values.
So one should not expect to get unbiased estimates even in linear models. We
have imposed the conditional probability

P(x|d)=04(G(x)-d) (6 denotes DIRAC's delta function)

Virtuelly a continuous distribution seems more realistic, but is not available.
"Self-contructed" P(x|d) could be even more inexact.

In most cases the inexact theory of our model generates probably more bias than
nonlinearity or incomplete optimization as our experiences so far indicate. But
many questions remain open for further studies, where we intend to rely on
Monte-Carlo-methods.

In this investigation we estimate variances by treating the mass positions as fixed.
So we avoid nonlinearity and optimization problems and we save a great deal of
computation time. Nevertheless, this method is more inexact by far, generally it
leads to very optimistical error estimates. By comparing some "true" and
estimated prediction errors we will see, whether this could be done or not.

How many point masses are necessary ?

Every additional point mass of course improves the fit of the data (sum of
squares of residuals), but at the same time decreases the number of degrees of
freedom. With very few point masses their ratio 0,2 is rapidly decreasing,
however there is a number of point masses, where o, is minimized. This could
serve as a termination criteria for the approximation procedure. Closely
examined this gives always some point masses more than necessary, as
hypothesis testing (F-test) indicates. Practically the latter is difficult to apply,
because some conditions will very seldom or never be satisfied. So it seems



reasonable to trust in some prior information about o,,, which is available in most
cases (e.g. from repeated measurements). Consequentely we can terminate, if our
estimated noise level in the data coincides with the a priori given one.

5.Numerical Results

The numerical results are mainly based on input data generated from the model
OSUB9B. They are presented at the right side of the poster, in detail:

5.1. The Normal Field GRS80 (7PM)

5.2. Global Model of the Long Wavelength Part (PM107/01)
5.3. Global Model with Medium Resolution (PM1107/01)
5.4. Regional Model for Europe (PM2107/01)

5.5. Global Model with High Resolution

We have usually applied an overlay principle for the models, that means: a model
with higher resolution or a regional model is based on a model with lower
resolution etc.

6.Conclusions

- The point mass positions are following the structure of the gravity field (e.g.
higher number of masses in rough areas - high data density presupposed) and
the procedure can be stopped at desired approximation accuracy.

- Models with different resolutions (ellipsoid, long wavelength, short wavelength)
and for various purposes can be handled and combined very effectively with the
same mathematical procedure.

- The regional investigations for Europe show, that the model with 2107 point
masses could be used as a reference field alternatively to OSU89B. The
OSU89B-Geoid in Europe was approximated with dm-accuracy. These
investigations are therefore hopeful prerequisits for further geoid research in
Europe based on the point mass method, including the real data.

- Questions of error estimation in point mass models need further research.

- For the Europe window (about 5% of the Earth surface) 1000 additional point
masses were needed to reach dm-accuracy for the geoid. Therefore one can
expect (as a raw estimate), that a global model of about 20 000 point masses
satisfies this accuracy requirement.

- As it is visible in the global model with high resolution the point mass positions
can be related to geophysical structures. Including additional informations (e.g.
topography/bathymetry, density etc.) point masses can hopefully be a tool for
geophysical interpretations.



S.1. Approximation of the Normal Field GRS 80
(7 Point Masses)

The point masses are situated following a proposal of
HEIKINNEN (1980):

- on the mean rotation axis of the earth (z-axis)
- equidistantly
- equatorial-symmetrically

Their magnitudes fit the level ellipsoid of GRS 80
with a
mean accuracy of 2.0 mm

and a
maximum deviation of 2.7 mm.

An even better approximation could be obtained (smaller
distances and stronger magnitudes), but causes
unacceptable rounding errors during evaluation.

GRS 80 approximation
(positions on the z-axis in units of Rg,
magnitudes in units of GM):

Z magnitude
-0.132 - 0.0086592
- 0.088 0.1016124
- 0.044 - 0.6081218

0.000 2.0303372
0.044 - 0.6081218
0.088 0.1016124
0.132 - 0.0086592



Visualization of the potential GRS 80
— meridional cross—section
— equipotential lines
— length scale: unils of earth radius




S.2. Global Model of the Long-Wavelength-Part
(7 + 100 Point Masses): PM107/01

Aim: e.g. orbit calculations of high altitude satellites
like LAGEOS and GPS

Input Data: OSU 89B up to (20,20) minus GRS 80
(7 Point Masses)

- for position optimization:
gridded acceleration vectors on a reference
sphere

- for final adjustment of masses
(positions fixed):
spherical harmonic coefficients, weighted
with respect to their variance and their
influence at 3000 km altitude



R.M.S. Values of Acceleration Differences for Several
Gravity Field Models in LAGEOS Altitude
(in 108 m - sec? = pgal)

GRIM4 TEG-2 GEM-T2 OSUS89B
TEG-2 1.7
GEM-T2 1.2 1.5
OSU89B 1.3 1.4 0.8
PM107/01 1.3 1.5 0.9 0.4

for comparison: r.m.s. of acceleration in LAGEOS altitude
(without normal field GRS 80): 935 - 108 m - sec™2

GRIM 4:  Deutsches Geodiitisches Forschungsinstitut,
Abt. I, Miinchen/Germany
Groupe de Recherches de Geodesie Spatiales
CNES, Toulouse, France

TEG-2: University of Texas, Austin/USA

GEM-T2: Goddard Space Flight Center, Greenbelt/USA
OSU89B:  Ohio State University, Columbus/USA
PM107/01: this investigation




Test computation

Orbital fit for satellite LAGEOS:

30-day-arc (MJD: 47 946,5 - 47 976,5)
orbital program system POTSDAM $§

OSU89B: + 6,2 cm
PM107/01: + 6,9 cm



5.3. Global Model with Medium Resolution

(7 + 100 + 1000 Point Masses): PM1107/01

Input Data: OSU 89B up to (60,60) minus PM107/01

- for position optimization:
gridded acceleration vectors on a reference
sphere

- for final adjustment of masses
(positions fixed):
spherical harmonic coefficients, weighted
with respect to their variance and their
influence at 500 km altitude
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S.4 Regional Model for Europe

Region: -20° < A < +50°
+30° < ¢ < +75°

(7 + 100 + 1000 + 1000 Point Masses)
S giobal

Aim:
Methodological investigation for approximation of the
gravitational field (target: geoid computation) with
OSU89B-resolution based on point masses (e.g. as a
reference model for local geoid determination)

Input Data:
OSU89B up to (360,360) minus global model PM1107/01

- for position optimization:
gridded acceleration vectors on a reference sphere

- for final adjustment of masses (positions fixed):
gridded acceleration vectors on a reference sphere plus
S geoid heights (for better absolute orientation of geoid
surface)

Evaluation:
- fit of the model to the input data
- fit of the model to 1000 randomly choosen control
points (gravity disturbances and geoid heights
— "true" error) and comparison to accuracy prediction

using linear error propagation (formula (12) )
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Grav. Disturb. OSU89B minus GRS80 for Europe (Isol. 20 mgal)
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Grav. Disturb. OSU89B minus PM1‘10’7/01 for Europe (Isol. 20 mgal)
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5.5. Global Model with High Resolution
(7 + 100 + ... Point Masses)

Input Data: OSU 89B up to (360,360) minus PM107/01

- gridded acceleration vectors on a reference sphere
Computational Results:
(The stepwise approximation is not yet finished)

Positions of the first 1000 and 4000 Masses are
presented in the figures

—> close relations to plate boundaries !
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