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Abstract 

We consider mixed boundary value problems in Physical Geodesy and study possibilities in 
order to transform them into a system of integral equations over the boundary of the domain. 
The system of integral equations can be solved numerically, by, e.g. boundary element methods, 
provided that (a) the mixed boundary value problem is uniquely solvable, (b) the system of 
integral equations is equivalent to the mixed boundary value problem, and (c) the matrix of 
integral operators is strongly elliptic. We introduce a method, first proposed by Stephan, which 
allows to derive integral equation formulations for all mixed boundary value problems relevant 
to geodetic applications. Moreover, the analysis of Stephan for the mixed Dirichlet-Neumann 
problem may be generalized to the geodetic mixed boundary value problems, as weIl. 

1 Introduction 

The objective of the paper is to study mixed boundary value problems (MBVPs) of type 

t:J.u = 0 in De 

Bou = go on So 

Beu = ge on Sc 

u = O(lxl-1
) , lxi --+ 00. 

(1) 

D is a bounded domain in ]R3 with sufficiently smooth boundary S = So U Se, with So n Se = 0, 
and De its complement in ]R3, i.e, De = ]R3 \ D. The curve 50 n Se is assumed to be smooth 

and simply cIosed. Bo and Be are first-order differential operators, and go and ge are the given 
boundary data. In geodetic applications, So can be identified with the surface of the oceans and 
Se with the continents. Depending of the choice of Bo and Be different mixed boundary value 
problems can be formulated. In geodesy, the most relevant (Iinearized) MBVPs are summarized 

in Table I. Depending on the level of approximation, additional MBVPs can be derived from 
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Table 1. Linearized geodetic mixed boundary value problems 

name Bo Be type 
altimetry-gravimetry 1 1 1 -Dr Dirichlet-Poincaré 
altimetry-gravimetry Ir Dr I -Dr oblique-Poincaré 
fixed altimetry-gravimetry I Dr Dirichlet-oblique 

the three basic problems listed in Table 1. For instance, in spherical approximation and constant 
radius approximation, the oblique boundary operator Dr becomes the Neumann operator, and 
the Poincaré boundary operator 1- Dr becomes the Robin operator. 

Existence and uniqueness of various linearized geodetic MBVPs have been studied, mostly 
in the context of the spherical and constant radius approximation, see, e.g., Amold (1981); 

Sjöberg (1982); Holota (1982); Svensson (1983); Sacerdote and Sanso (1983a, 1983b); Holota 

(1983a, 1983b); Amold (1984); Sacerdote and Sanso (1987); Svensson (1988); Sanso (1993); 

Keiler (1996). 
Numerical aspects of geodetic MBVPs have been studied by, e.g., Sjöberg (1982); Bjer­

hammar (1983); Sanso and Stock (1985); Hofmann-Wellen hof (1985); Mainville (1986); Mayer 
(1997). In the context of integral equation formulations, the references Sanso and Stock (1985) 
and Mayer (1997) are of interest. In Sanso and Stock (1985) an integral equation formulation 
of the linearized altimetry-gravimetry 11 MBVP in spherical approximation has been used and 

applied to a local area (see Section 4) . The transformation of the MBVP into an integral equa­

ti on is based on the explicit solution of the Neumann problem for a spherical boundary surface 
S , and cannot be applied to MBVPs with non-spherical surfaces andlor other types ofboundary 
data. Mayer (1997) propos es a completely new solution strategy for the nonlinear altimetry­
gravimetry TI MBVP, which assumes agiobal coverage with gravity values and, in addition, 
the potential to be given on the free continental part of the boundary. Firstly, a hypersingular 
integral equation for the linearized fixed gravimetric BVP is solved, due to the global coverage 
with gravity values. Then, the remaining Dirichlet boundary condition over the free continental 
part yields a nonlinear operator equation, which has to be solved for the unknown continental 
geometry. The solution has to be improved iteratively (see Section 5). 

Stephan (1987) studied the Dirichlet-Neumann MBVP on closed surfaces in ]R3 based on 
an equivalent formulation of the MBVP as a system of two integral equations. His method is 
general enough to derive integral equations for all relevant MBVPs in geodesy. Moreover, his 
procedure to prove the existence and uniqueness of the system of integral equations, and the 
equivalence of the MBVP with the system of integral equations, may be applied to geodetic 
MBVP, as weil. Therefore we first want to introduce his method and the main lines of the 
analysis; then we want to show how integral equations for geodetic MBVPs can be derived 
analogously. Finally, we will briefly discuss the methods of Sanso and Stock (1985) and Mayer 
(1997) since they also make use of integral equations in order to solve geodetic MBVPs. 



2 The method of Stephan 

Stephan (1987) discusses the solution of the Dirichlet-Neumann problem in ]R3 : 

t:.u = 0 in DC 

u = gl on SI 

Dnu = g2 on S2 

u = O(JXJ-1), JxJ--+ 00. 
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(2) 

nis the unit normal vector to S pointing into DC. Sis assumed to be sufficiently smooth. An 
extension to polyhedral domains is presented in von Petersdorff and Stephan (1990). 

Existence and uniqueness of the weak solution u of the Dirichlet-Neumann MBVP (2) is 
proved by use of (a) the uniqueness of the weak solution, (b) the equivalence of the MBVP 
to the system of integral equations, (c) the existence and uniqueness of the solution of the 
system of integral equations, and (d) the solution of the integral equation by inserting into the 
representation formula. The weak solution is defined by Green's first identity: Let u E HI~c(DC) 
and v E H 1(DC) with bounded support. Then 

r 'Vu 'VvdD = - r 'Y(Dn u)"(vdS, iDc is (3) 

where'Y denotes the restrietion to S. This holds if the trace 'YDnu is at least in H-1 j 2(S). The 
space U we look for the weak solution is defined by U := {u E HI~c(DC) : t:.u = 0 in DC, u = 
O(JXJ-1), Ixl--+ oo}. 

The uniqueness of the weak solution can easily be proved by means of Green's first identity 
applied to n := B n DC, where B denotes a sufficiently large balI with radius R that encloses 

D. Let u EU with 'Y1U = 0 and 'Y2Dnu = 0, where 'Yi is the restriction to Si, i = {I, 2}. Then 

(4) 

The left-hand side of (4) tends to zero as R --+ 00 . This implies l'Vul = 0, thus u = const. in 
n. Since u = O(lxl-1), it follows that u = o. 

In order to transform the MBVP (2) into an integral equation we need a representation of 

the weak solution u of the MBVP in terms of boundary potentials. This can be done in different 
ways, e.g., by using a representation of u as single layer potential, double layer potentialor a 
linear combination of both. Here, we make use of another possibility, namely of Green's third 
identity: For u E U, and the Cauchy-data 

(5) 

it holds 

u(x) = lJ.1(Y)Dn(y)S(X- Y)dS(y)-ls(x- Y)V(Y)dS(Y), xEDc, (6) 
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where s(x - y) is the fundamental solution of the Laplace equation in IR3, i.e., s(x - y) 
(411" I y - x I) -1. The Calderon-projector 

(7) 

projects H 1j2(S) x H1j2(S) on the Cauchy-data of weak solutions in U, see Stephan (1987). 

This projector might be understood as generalization of the well-known limit-relations for the 
single layer potential and the double layer potential (e.g., Miranda (1970)). Using p( ~) for the 
Cauchy-data of the weak solution, we obtain the following system of integral equations on S: 

! (J-L) = (K -V) (J-L) . 
2 1/ D -K' 1/ 

The boundary integral operators V, K, K', and D are defined by (x ES): 

(Vx)(x) = Is S(x - y) x(y) dS(y), 

(KX)(x) = Is Dn(y)s(x - y) X(y) dS(y), 

(K'X)(X) = Is Dn(x)s(x - y) X(y) dS(y) , 

(DX)(x) = Is Dn(x)Dn(y)s(x - y) X(y) dS(y). 

(8) 

(9) 

The system (8) together with the boundary conditions in (2) provide more equations than un­
knowns; depending on how they are combined, we can derive a system of first order integral 
equations, of second order integral equations, or a mixed system of integral equations. For in­

stance, when restricting the first equation in (8) to SI and the second equation to S2, we obtain 

(10) 

or, in matrix form, 

(11) 

The subscript ik means integration over Si and evaluation on Sk> e.g., if 

(KX)(x) = Is Dn(y)s(x - y) X(Y) dS(y) , xE S, (12) 

the operator Kik is defined by 

(KikX)(X) = Isi Dn(y)s(x - y) X(y) dS(y), xE Sk· (13) 
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Equation (11) defines a system of first order integral equations for the Cauchy-data (~) . AI­
tematively, we may restrict the first equation in (8) to S2 and the second one to SI; then we 

obtain 

on SI: ~v = Dll g1 + D21Jl- K~IV - K~lg2, 
1 

on S 2: 2/-L = K 1291 + K 22 /-L - V12V - V2292' 

i.e., a system of second kind integral equations 

(14) 

(15) 

Analogously, mixed systems can be obtained by taking only one of the two equations in (8) 

and restricting first to SI and then to S2 . 

The solvability of the systems of integral equations is shown in several steps. We will omit 
the details and will only point out the main lines, whereby we limit to system (11). For the 

details, see Stephan (1987). 

Firstly, the mapping properties of the involved integral operators are determined. The oper­

ators V, K, and K' have kemels of order O(ly - Xl-I) as (y - x) -+ 0, hence they are weakly 

singular integral operators on S. D has a kemel of order O(ly - xl-3
) as (y - x) -+ 0, i.e., it is 

a hypersingular integral operator on S. Moreover, V, K, K', and D are continuous mappings 
in suitable Sobolev spaces, i.e., they define pseudodifferential operators of integer order on S. 
V, K, and K' have order -1, and D has order +1. Although the mappings 

Vik :Ï[8(Si) -+ HS+1(Sk) , 

Kik :HS(Si) -+ W+1(Sk) , 

K~k :HS(Si) -+ HS+1(Sk) , 

Dik :Hs+1(Si) -+ HS(Sk), 

(16) 

act only on pieces of S, it can be shown, using standard arguments from the theory of pseudod­

ifferential operators, that they are continuous for some rea! s, depending on the smoothness of 

S. Here, u E fIS(Si) = {u E HS(S) : supp u C S\}. 
Secondly, the system (11) is rewritten in order to make use of the mapping properties (16): 

if 91 E H 1/ 2(S) and 92 E H - 1/ 2 (S) denote arbitrary extensions of the boundary data, the 
unknown Cauchy-data (~) admit the form 

(17) 

with /-Lo E H1/2(S2) and Vo E H- 1/2(SI) and 'Yl/-LO = 0 and 'Y2 VO = O. Then, (11) can be written 
as 

(18) 
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where K S1 means integration over S and evaluation on SI etc. 

Thirdly, the mapping properties of the involved matrix operators 

(19) 

are investigated. From (16) it follows that the matrix operator A is continuous for some real s 
depending on the smoothness of S as mapping fIS(S2) X fI S(SI) ---+ fIS(SI) X fIS-l(S2). 
The continuity of the extensions 9i, i = {1,2} in HS(S) for gi E HS(Si) together with 
the mapping properties (16), provide the continuity of Bas mapping fIS(S) x fIs-l(S) ---+ 
fIS(SI) X fI s- 1 (S2), for some real s, depending on the smoothness of S . 

Fourthly, the uniqueness of (18) is shown. We omit the details and refer to Stephan (1987). 

Moreover, since the matrix operator A is strongly elliptic, i.e., it satisfies some coerciveness 

inequalities in appropriate Sobolev spaces, it differs by a compact perturbation from a positive 
definite operator. Hence, A is a Fredholm operator of index zero. For Fredholm operators of 
index zero it is known that injectivity implies surjectivity, thus A is bijective. 

Finally, the equivalence of the original MBVP (2) with the system of integral equations (11) 

is shown, i.e., J-Lo = 72U - 7291, /10 = 71 Dnu - 7192 , and, conversely, u in DC is given by 

u(x) = Is jj(y) Dn(y)s(x - y) dS(y) - Is s(x - y) v(y) dS(y) , x E DC
, (20) 

with 

(21) 

and extensions 9i' i = {I , 2} from above. 

3 Application of Stephan's method to geodetic MBVP 

The method of Stephan may be applied to any geodetic MBVP in order to transform it into 
a system of integral equations. Then, we have to study the solvability of the system, making 

use of the procedure as sketched above, and have to investigate the equivalence of the geodetic 

MBVP with the system of integral equations. For instance, let us consider the Dirichlet-oblique 

MBVP 

.6.u = 0 in D C 

u = go on So 

Dru = gc on Sc 

u = O(lxl-1
) , Ixl---+ 00, 

(22) 

with Dirichlet data on the oceans and oblique-derivative data on the continents. 70 and 7c de­
notes the restriction to So and Sc, respectively. T defines an oblique unit vector field on S, 
pointing into D . This problem has been studied by Keiler (1996). It results after lineariza­
tion of the non-linear fixed altimetry-gravimetry MBVP, which assumes that the geometry of 
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the Earth's surface is known and that gravity potential and gravity is given in ocean areas and 
continental areas, respectively. Keiler (1996) shows the existence and uniqueness of the solu­
ti on using the Kelvin transformation and the Lax-Milgram theorem. In order to transform the 

Dirichlet-oblique MBVP into an integral equation, we first need a representation formula that 

conneets the Cauchy-data a := ')'U and,8 := -( 1 )')'(DTu) with the unknown function u. Starting 
n.T 

from Green's third identity (6), we obtain 

u(x) = Is (n~~~~y) Drs(x - y) dS(y) - Is s(x - y) (3(y) dS(y) 

+ Is (~, V(as))(y) dS(y), x EDe, (23) 

with the unit vectors r = 2(n, T) n - T and ~ = (n~T) - n. Since V(a s) = Grad(a s) + 
nDn(as), and observing that (E,n) = 0, we obtain (E, V(as)) = (~,Grad(as)). Grad 
denotes the surface gradient operator. Moreover, since S is a closed surface, it holds 

Is (~, Grad(a sj) dS = - Is a s Div E dS, (24) 

with the surface divergence operator Div. Therefore, we obtain for (23) 

u(x) = Is (n~~~~y) Drs(x - y) dS(y) - Is s(x - y) (3(y) dS(y) 

- Isa(y)s(x- y) (DivE)(y)dS(y), xEDe. (25) 

Equation (25) is our new representation formula. It is called "generalized Green-identity" 

(cf.Klees (1992, 1997)). Defining the oblique-derivative differential operator 

Pr := _( 1 )Dr - Div~I, 
n,T 

(26) 

we obtain the final form of our representation formula: 

u(x) = Is Pr(y)s(x - y) a(y) dS(y) - Is s(x - y) (3(y) dS(y), x EDe. (27) 

Observing the jump relations for the single layer potential and its gradient, we obtain the bound­
ary integral equation (cf.Klees (1997)) 

~ u(x) = r Pr(y)s(x - y) a(y) dS(y) - r ,8(y) s(x - y) dS(y), xE S. (28) 
2 is is 

Taking the oblique derivative of (27), we obtain for the limit to the boundary 

xE S, (29) 
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with 

and 

Defining the new boundary integral operators 

(Xx)(X) := Is Pr(y)S(X - y) x(y) dS(y) , 

xE S, 

(UX)(x) := Is DT(x)Pr(y)s(x - y) X(y) dS(y), 

xE S, 

(WX)(x) := Is DT(x)s(X - y) X(y) dS(y), 

xE S, 

(30) 

we obtain the following system of integral equations by restricting (28) first to So and then to 

Sc: 

( 
Xco -Voo) (0) _ (~I - X oo v;,o) ( 90 ) 

~I-Xcc Voc (3 - X oc -v;,c (n~T)9c' 
(31) 

Equation (31) defines a mixed system of boundary integral equations; it is of the second kind 

w.r.t. 0 and of the first kind w.r.t. (3. We can derive alternative integral equations, e.g., by 
restricting (28) to So and (29) to Sc and vice versa. For instance, restricting (28) to Sc and (29) 
to So, we obtain a system of second kind integral equations for the unknowns 0 and (3: 

Analogously, restricting (28) to So and (29) to Sc, we obtain the mixed system of integral 
equations: 

Like (31) it is of the second kind w.r.t. 0 and of the first kind w.r.t. (3. The boundary operators 
in (31),(32), and (33) have the following mapping properties: For some real s, depending on 

the smoothness of S, and i, k = {o, c}, the mappings 

X ik : fIS(Si) --+ HS(Sk) , 

Uik : fIS+l(Si) --+ HS(Sk) , 

Wik: fIs (Si) --+ H S (Sk) 

(34) 
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are continuous. X ik and Wik define strongly singular integral operators, which are pseudodif­
ferential operators of order 0; Uik is a hypersingular integral operator, which has order 1. For 

the property of Vib see (9). What still has to be done is to investigate the solvability of the sys­

tems (31)-(33) and to prove the equivalence of the Dirichlet-oblique MBVP with the systems 

of integral equations. This can be done following the procedure of Stephan (1987). 

4 The method of Sanso and Stock 

Sanso and Stock (1985) consider the Robin-Neumann mixed boundary value problem 

~u = 0 in De 

Dn U = go on 50 

2 
Dn u + RU = ge on Sc 

u = O(lxl- 1
), lxi -+ 00, 

(35) 

where 5 is the surface of a sphere with radius R. They look for a solution u E HI~e(S) for given 
boundary data go E H)..-l(So) and ge E H)..-l(Se) with ~ < À < ~. The transformation into a 

boundary integral equation is based on the explicit solution of the Neumann BVP for a sphere, 

which is known as Hotine's formula: 

u(x) = - ~ Is H(x - y) (-yDn u)(y) d5(y), xE 5, 

with the Green function of the second kind (Hotine function, Neumann function) 

2R ( 2R) 
H(x - y) = Ix _ yl - In 1 + Ix _ yl . 

Defining the integral operator 

E x(x) := _!!:.. ( H(x - y) x(y) dS(y), xE S, 
47r is 

(36) 

(37) 

(38) 

equation (36) can be written as /-l = Ev. As in Section 2, (~) define the traces on 5 ('Y~:u). 
Observing the boundary condition of the Robin-Neumann MBVP, we have 

(39) 

hence, 

(I + ~Ees) /-l = Eosgo· (40) 

Equation (40) is an integral equation of the second kind for the unknown Cauchy-data /-l. Sub­

stituting /-l = /-la + ~lgo, we obtain 

(41) 
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The operators A, B : HS(S) -+ HS(S) are continuous for some real s depending on the smooth­
ness of S. Analogously to Section 2, we can prove the solvability of (41) and the equivalence 
of the integral equation with the Robin-Neumann MBVP. We omit the details. In order to solve 
the integral equation, we can apply, e.g., the Nyström method, collocation boundary element 
methods or Galerkin boundary element methods. 

The method relies on the spherical topology since only then the Neumann function is known, 
i.e., there is an explicit solution of the Neumann problem available. However, the basic idea can 
easily be generalized if instead of Hotine's formula Green's third identity is used. With the 
results of Section 2, we have 

hence, 

(43) 

The operator A := (!I - K - ~Vcs) is continuous from HS(S) -+ HS(S), the operator B := 

_(~~)T is continuous fromHS-1(So) x HS-1(Sc) -+ HS(S) . 
Altemative integral equations can be derived in different ways making use of (8) and re­

stricting to So or Sc' If on Sc 'cV is replaced by gc - ~'cJ.L, we obtain only one integral equation 
for the unknown J.L = ,U. For instance, when restricting the first equation in (8) to Sa' we obtain 
the second kind integral equation 

(44) 

with weakly singular kemels. When restricting the second equation in (8)to Sc, we obtain a 
second kind integral equation with weakly singular and hypersingular kemels 

(45) 

We can also derive a first order integral equation by restricting the second equation in (8) to Sa: 

(46) 

The corresponding kemels are weakly singular and hypersingular. What remains is to prove the 
solvability of the integral equations and the equivalence with the original MBVP. The prove can 
easily be done using the procedure and results of Section 2. We omit the details. 

5 The method of Mayer 

Mayer (1997) considers the altimetry-gravimetry 11 MBVP in non-linear form. There are two 
sources of nonlinearities: 
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1. gravity is a non-Iinear functional of the potential, and 

2. the boundary surface is partly free (over the continents, unobservable by altimeter radar) . 

The new idea of Mayer is to perform a linearization with respect to source 1 (gravity) only, and 

later on, to solve the resulting (still non-linear) problem by a special iteration procedure. This 
approach is justified by recent findings of Heck and Seitz (1993), that source 2 (free boundary) 
is the more severe source of non-Iinearity in geodetic boundary value problems. Consequently, 
if any iteration will be necessary, then w.r.t. source 2. 

The formulation of the partly Iinearized altimetry-gravimetry 11 MBVP is: 

/::"u = 0 in De 

Dru = g on S 

u = ge on Se 

U = O(lxl-1
) , Ixl--+ 00. 

(47) 

The oceanic surface So := S \ Se is assumed to be known, as weil. If in addition Se were 

known instead of ge, the resulting BVP would be identical to the linearized fixed gravimetric 

BVP, which in turn equals the classical oblique BVP for the Laplace equation. This problem is 
much easier to solve because it is not mixed. Some theoretical results exist (e.g., Klees (1992)), 

and have been augmented recently by Mayer (1997). Also from the numerical point of view, 
this problem is solvable using boundary element methods (e.g., Klees (1992)) . 

A boundary integral equation for the linearized fixed gravimetric BVP is derived from a 
representation formula, for which Mayer prefers a combined double- and single-layer potential 

u(x) = (KX)(x) + K: (VX)(x) , x EDe, (48) 

where K: is an arbitrary positive real number, and X is the surface density. Defining the operators 

(Yx(x ) := Is Dr(x )Dn(y)s(x - y) X(y) dS(y) , 

x ES 

1 
(ZX(x) := - (Gradx, r) , 

2 

we obtain an integro-differential equation of the second kind on S 

AX := ( -~K:(n, r )1 + Z + Y + K:W) X = g. 

Formally, the solution of this integro-differential equation can be written as 

Hence, the desired potential function is 

u(x) = ([K + K:VJA-lg)(X), x EDe. 

(49) 

(50) 

(51) 

(52) 
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Now, we return to the actual problem (47), where additionally the Dirichlet condition over the 
continents 

/eU = ge (53) 

has to be fulfilled. The only unknown of this equation is the boundary surface Sc. Therefore, 
we end up with an operator equation, which must be solved for Sc: 

(54) 

The operator Q(Se, g) is non-linear in the first argument. The complicated structure of this 

operator is the price we have to pay for the striking simplicity of the first solution step (51),(52). 
The nonlinear operator equation (54) must be solved iteratively, starting from an initial guess Sc 
for Sc, which in geodesy is known as the telluroid. However, note that S := Sc U So must be a 
closed surface, which is not guaranteed by classical definitions of the telluroid. Quite formally, 
let us express the Fréchet expansion of Q as 

(55) 

This expansion suggests an iterative procedure of Newton type: Let S~O) := Sc; for n 
1,2, . .. : 

(56) 

So far, nothing can be said about the feasibility of this suggestion, neither about the existence 

and uniqueness of the inverse Fréchet derivative nor about the convergenee of this procedure. 
Moreover, due to the complicated structure of Q there is even less hope to obtain similar results 
as with classical geodetic approaches. Mayer (1997) has also derived an explicit expression for 
the Fréchet derivative of Q. However, the complexity of this expression wil! certainly prevent 
any practical application in geodesy. 

Nonetheless, Mayer (1997) has shown that there always exist interesting alternatives to the 
standard geodetic techniques. 
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