Hochschule für Technik und Wirtschaft Dresden Fakultät Informatik/Mathematik

Lehrveranstaltungsbeschreibung

Computergrafik I

Inhaltliche Schwerpunkte:

Die Lehrveranstaltung führt in das Gebiet der Computergrafik unter Verwendung der weit verbreiteten Grafiksoftware OpenGL. Auf diese Weise lernen die Studenten einerseits die grundlegenden computergrafischen Konzepte kennen und werden andererseits in die Lage versetzt, diese in der Programmierung unter Nutzung von C und entsprechenden Bibliotheken einzusetzen.

Die Vorlesung stellt im ersten Teil nach einer allgemeinen Einführung die programmiertechnischen Konzepte von OpenGL vor. Das beinhaltet Syntax und Semantik aller Komponenten der OpenGL Grafikbibliotheken in Verbindung mit Anwendungsbeispielen.

Im zweiten Teil werden grundlegende computergrafische Konzepte in ihrer mathematischen Form und algorithmischen Umsetzung dargestellt. Dies sind mathematische Grundlagen, Modelle zur Helligkeits- und Farbdarstellung, Algorithmen der Rastergrafik und Objektsichtbarkeit sowie Transformationen und Projektionen grafischer Objekte.

Im Praktikum entwickeln die Studenten eigene Programmierfertigkeiten im Umgang mit der Grafiksoftware OpenGL anhand der Bearbeitung grafischer Aufgabenstellungen.

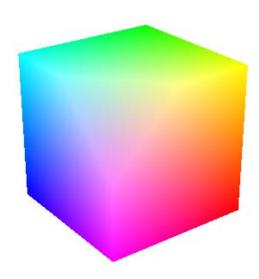
Die Prüfung besteht in einer Klausur von 90 Minuten mit Unterlagen.

Zielgruppe: Informatik **Umfang:** SWS 2/0/2

Voraussetzungen: Grundkenntnisse Informatik, C/C++-Programmierung

Abschluss: Schriftliche Prüfung

Prof. Dr.-Ing. habil. Wolfgang Oertel Friedrich-List-Platz 1, Raum Z 358 Email: oertel@informatik.htw-dresden.de


Tel.: 0351/462-2133

Lehrveranstaltungsplan:

Woche:	Vorlesung:	Praktikum:
1	OpenGL: System und Programm	OpenGL: System und Programm
2	OpenGL: Shader und Sprache	OpenGL: Funktion und Geometrie
3	OpenGL: Raum und Ansicht	OpenGL: Shader und Sprache
4	OpenGL: Zeichnung und Attribut	OpenGL: Raum und Ansicht
5	OpenGL: Pixel und Puffer	OpenGL: Nutzerinterface und Animation
6	OpenGL: Bild und Textur	OpenGL: Zeichnung und Attribut
7	OpenGL: Licht und Material	OpenGL: Pixel und Puffer
8	OpenGL: Shader und Parallelisierung	OpenGL: Bild und Textur
9	Transformation und Matrix	OpenGL: Licht und Normale
10	Projektion und Matrix	OpenGL: Material und Schattierung
11	Helligkeit und Farbe	OpenGL: Shader und Parallelisierung
12	Linie und Fläche	OpenGL: Transformation und Projektion
13	Klippen und Glätten	OpenGL: Helligkeit und Farbe
14	Sichtbarkeit und Verdeckung	OpenGL: Linie und Fläche
15	Technologie und Umfeld	OpenGL: Rendern und Rückkopplung

Literatur:

- OpenGL Reference Pages / OpenGL Reference Card. www.opengl.org
- Segal, M.; et al.: The OpenGL Graphics System. The Khronos Group Inc., 2015
- Kessenich, J.: The OpenGL Shading Language. The Khronos Group Inc., 2015
- Shriner, D.; Seller, G.; Kessenich, J.: *OpenGL Programming Guide*. Addison-Wesley, Munich, 2017
- Rost, R.; et al.: OpenGL Shading Language. Pearson Education, Boston, 2010
- Wright, R.; Haemel, N.; et al.: OpenGL SuperBible. Pearson Education, Boston, 2011
- Sellers, G.; Kessenich, J.: *Vulkan Programming Guide*. Addison Wesley, Munich, 2016
- Foley, J.; van Dam, A.; Feiner, S.; Hughes, J.: *Computer Graphics*. Addison-Wesley, Bonn, 1990
- Encarnação, J.; Straßer, W.: *Graphische Datenverarbeitung 1 und 2*. Oldenbourg, München, 1996, 1997
- Bender, M.; Brill, M.: Computergrafik. Hanser, München, 2003
- Nischwitz, A.; Haberäcker, P.: *Masterkurs Computergrafik und Bildverarbeitung*. Vieweg, Wiesbaden, 2004
- Vince, J.: Mathematics for Computer Graphics. Springer, London, 2006

